Abstract:
A method of manufacturing a liner for use in a pressure vessel includes a cold drawing process that shapes a transition zone (20b) part of an aluminium alloy liner shell (10). The transition zone (20b) links a thinner walled drum part (18) and a thicker walled end region (20a), which is at an open top of the shell. The transition zone (20b) may be shaped by the cold drawing process such that it reduces susceptibility of the shell to fracture during removal from a cold drawing press and also redistributes shell material in preparation for a subsequent process in which a threaded neck is formed from the end region (20a). This process is particularly suited to processing harder aluminium alloy materials such as AA7060 or AA7032.
Abstract:
A system for offloading a compressed fluid from a series of pressure vessels, the system comprising a multilevel piping system and at least one ejector device, the ejector device being for recovering energy from a high pressure fluid stream from a substantially full pressure vessel, and for forced suction of residual fluid from a part offloaded pressure vessel, the multilevel piping system comprising, in use, at least three different pressure levels, including a high pressure line, a medium pressure line and a low pressure line, the high pressure line being intended to supply the said ejector device with the high pressure fluid stream, the medium pressure line being intended for both the forced suction of the residual fluid and mixing with the high pressure line, and the low pressure line being intended for each of mechanical suction of the residual gas not drawn off by the ejector, recompression thereof by means of at least one compression turbomachine, and assisting energy recovery by transferring heat via gas/gas exchangers.
Abstract:
A storage system for compressed natural gas which includes at least one storage vessel for storing CNG and a cooling station wherein the storage vessel is connected to the cooling station so that CNG may be stored in the storage vessel after had been passing through the cooling station and once the stored gas conditions fall out a set range, it is cooled in the cooling station, and returned to the storage vessel, wherein the storage vessel is thermally insulated from the exterior thereof thanks to the composite materials and especially glass-reinforced polymers whose pressure vessels are made.
Abstract:
A system for loading and storing CNG onboard of a barge and for unloading it therefrom comprises CNG loading facilities for loading CNG on board of the barge, CNG storage facilities for storing the loaded CNG on board of the barge at nominal storage pressure and temperature, and CNG unloading facilities for unloading CNG to a delivery point. The delivery point requires the unloaded CNG to be at delivery pressure and temperature generally different from the storage pressure and temperature. Thus, the CNG unloading facilities comprise a CNG heater for heating the to-be-unloaded CNG prior to unloading, and a lamination valve for allowing the to- be-unloaded CNG to expand from its storage pressure to the delivery pressure. A compressor may also be provided to compress CNG that would not otherwise be spontaneously delivered.
Abstract:
A pressure vessel is provided including an inner tank formed from a tank liner surrounded by a wound layer of composite filaments. A protective jacket is disposed on the inner tank that facilitates stacking and portability of the pressure vessel and helps to define an air passage for convective heat transfer between the hybrid tank and the environment.
Abstract:
Die Erfindung betrifft einen Druckbehälter zum Speichern eines Fluides, mit einem Kunststoffkernbehälter und einem auf den Kunststoffkernbehälter (1) aufgebrachten Außenmantel (6), der Außenmantel (6) aufweisend: eine erste faserverstärkte Armierung (4) mit einer oder mehreren gewickelten, erste Fasern enthaltenden Lagen (3; 7), die in ein erstes Matrixmaterial eingebettet sind, eine zweite faserverstärkte Armierung (5), die in Bezug auf die erste Armierung (4) außen und mit einer oder mehreren gewickelten, zweite Fasern enthaltenden Lagen (13; 14; 15; 19) gebildet ist, wobei die zweiten Fasern wahlweise von den ersten Fasern verschieden und in ein zweites Matrixmaterial eingebettet sind, welches wahlweise vom ersten Matrixmaterial verschieden ist, und eine stoßabsorbierende Armierungsverdickung in einem Polkappenbereich (16), nämlich dem Übergangsbereich zwischen Stirnseite (8) und Umfang (2) des Kunststoffkernbehälters (1), und wahlweise benachbart hierzu, wobei die stoßabsorbierende Armierungsverdickung gebildet ist, indem ein oder mehrere polkappenverdickte, gewickelte Lagen (14; 15) in der ersten und/oder der zweiten Armierung (4, 5) mit einer stirnseitigen Öffnung gebildet sind, die größer als die stirnseitige Öffnung nicht polkappenverdickter, gewickelter Lagen (7, 13, 19) in der ersten und / oder der zweiten Armierung (4, 5) ist.
Abstract:
A process prevents a reduction in the strength of the joint between the liner components, and assures high productivity without impairment. The peripheral walls (6, 7) of the liner component (4) and each of the second liner components (5) are brought into contact with each other, a probe (22) of friction agitation joining tool (20) is placed into the two liner components across the contact portions thereof, and the probe (22) in rotation is thereafter moved relative to the two liner components (4, 5). Assuming that the number of revolutions of the probe (22) is R rpm and that the speed of joining of the two liner components (4, 5) is V mm/min, R/V is in the range of 2
Abstract translation:一种方法防止衬里部件之间的接合强度降低,并且确保高生产率而不受损害。 衬套部件(4)的周壁(6,7)和每个第二衬套部件(5)彼此接触,将摩擦搅拌接合工具(20)的探针(22)放入 两个衬套部件穿过其接触部分,然后旋转的探头(22)相对于两个衬垫部件(4,5)移动。 假设探头22的转数为R rpm,两个衬垫部件4,5的接合速度为Vmm / min,R / V为2 <= R / V <= 12。