Abstract:
The invention pertains to a flow controller assembly for microfluidic applications, which flow controller assembly comprises at least one microfluidic flow controller, which microfluidic flow controller comprises: - a microfluidic chip, which microfluidic chip comprises a channel for accommodating a fluid flow, which channel runs through said microfluidic chip and has a channel inlet that is connectable to a fluid source and a channel outlet that is connectable to a further fluid conduit, - a thermal energy transmitter, which thermal energy transmitter is adapted for heating and/or cooling at least a part of the channel by producing a thermal output, thereby influencing the flow rate of fluid that is present in said channel, - a flow sensor for measuring the flow rate of a fluid running through the flow controller, said flow sensor being adapted to produce flow rate measurement data, - a data control unit, which is connected to the flow sensor by a first data connection which first data connection allows the data control unit to receive flow rate measurement data from the flow sensor, which data control unit is connected to the thermal energy transmitter by a second data connection, which second data connection allows the data control unit to influence the thermal output of the thermal energy transmitter, which data control unit comprises a data processing unit that is adapted to determine the difference between the measured flow rate and a preset desired flow rate and to regulate the thermal output of the thermal energy transmitter in order to obtain or maintain the desired flow rate.
Abstract:
Provided is a flow control element for a microfluidic or nanofluidic device, comprising: a) a fluid source; and b) a flow restriction component; wherein the flow restriction component is situated downstream from the fluid source, and the flow restriction component has a hydrodynamic resistance at least 5 times higher than the hydrodynamic resistance of the device. Also provided is an apparatus comprising at least one flow control element and further comprising a microfluidic or nanofluidic device. Additionally provided is the use of the flow control element or apparatus. Further provided is a method of regulating the flow rate of a fluid entering or within a microfluidic or nanofluidic device, which method comprises altering the pressure applied to a fluid within a fluid source of a flow control element or apparatus as defined in any preceding claim.
Abstract:
A micro fluid delivery device is particularly useful in medical applications. The device may be worn or carried by the user and may deliver drugs or other medicaments to the user or patient. The device has a control system that accepts input from the user and controls all aspects of operation of the device. The control system measures the output of the pump and adjusts the output of the pump to achieve the desired dosage rate and size. This eliminates differences from pump to pump that result from inevitable variations in the manufacturing of such small scale affordable devices.
Abstract:
The pumps (Pn) are operated to transport individual reagent streams into the chip in a non-pulsatile, laminar flow regime at low flow rates permitting lows grading from 0 to as little as 5 nl/min with a precision of 0.1 nl/min. In the chip (MFC), the reagent streams are merged and the reagents mixed to form a reaction product. The reaction product can be measured at one or more detection points defined in the chip. Concentration gradients are continuously varied by continuously varying the flow rates respectively produced by the pumps according to predetermined flow velocity profiles.
Abstract:
A valve chip may include a substrate having first and second faces and openings between the first and second faces, and a plurality of flexible valve flaps on one of the faces of the substrate with each flexible valve flap being associated with at least one of the openings. The valve chip may be packaged by forming a frame having an opening therein, and securing the valve chip in the opening of the frame. More particularly, the valve chip may be secured in the opening so that central portions of the first and second faces of the substrate are exposed through the opening in the frame and so that a fluid seal is provided between the frame and edges of the substrate. Related valves, valve assemblies, and methods are also discussed.
Abstract:
A valve chip may include a substrate having first and second faces and openings between the first and second faces, and a plurality of flexible valve flaps on one of the faces of the substrate with each flexible valve flap being associated with at least one of the openings. The valve chip may be packaged by forming a frame having an opening therein, and securing the valve chip in the opening of the frame. More particularly, the valve chip may be secured in the opening so that central portions of the first and second faces of the substrate are exposed through the opening in the frame and so that a fluid seal is provided between the frame and edges of the substrate. Related valves, valve assemblies, and methods are also discussed.
Abstract:
A method of mixing two or more fluids comprising pulsing the flow of two fluids selected from the two or more fluids, reversing the flow of one of the pulsed fluid, bringing into contact the fluids and causing them to mix. A device for mixing the fluids is also provided.
Abstract:
A fluid driving system for portable flow cytometers (10) or other portable devices that accept a less precise and less stable pressure source, and then adjusts the pressure in a closed-loop manner to maintain a constant, desired flow velocity. The fluid driving system may be used in portable or wearable cytometers (10) for use in remote locations, such as at home or in the field.
Abstract:
A microvalve device for controlling fluid flow in a fluid circuit (10). The microvalve device comprises a body (12) having a cavity formed therein. The body further has first (20) and second (22) pilot ports placed in fluid communication with the cavity. The body also has first (28) and second (30) primary ports placed in fluid communication with the cavity. Each port is adapted for connection with a designated fluid source. A pilot valve (36) supported by the body is movably disposed in the cavity for opening and closing the first and second pilot ports. An actuator (38) is operably coupled to the pilot valve for moving the pilot valve. A microvalve (40) is positioned by the fluid controlled by the pilot valve. The microvalve is a slider valve having a first end (40a) and a second end (40b). The slider valve is movably disposed in the cavity for movement between a first position and a second position. The first end of the slider valve is in fluid communication with the first and second pilot ports when the first and second pilot ports are open. The second end of the slider valve is in constant fluid communication with the first primary port. When moving between the first and second positions, the slider valve at least partially blocks and unblocks the second primary port for the purpose of variably restricting fluid flow between the primary ports.
Abstract:
A handheld system includes a reference pressure source configured to generate a reference pressure. The handheld system also includes a primary pressure source coupled to the reference pressure source. The primary pressure source is configured to generate a primary pressure in a primary pressure range. The primary pressure is less than the reference pressure, and the primary pressure is induced by the reference pressure source. The handheld system also includes a secondary pressure source coupled to the primary pressure source. The secondary pressure source is configured to generate a secondary pressure in a secondary pressure range. The secondary pressure is less than the primary pressure, and the secondary pressure is induced by the primary pressure source.