Abstract:
A continuous thin film deposition apparatus that includes a remote plasma source. The source forms a plasma from a precursor and delivers a modified form of the plasma as a charge-depleted deposition medium to a deposition apparatus for formation of a thin film material. The thin film may be formed on a continuous web or other moving substrate. The charge-depleted deposition medium may be formed within the remote plasma source and delivered to an operatively coupled deposition apparatus or the charge-depleted deposition medium may form as the plasma exits the remote plasma source. The initial plasma is formed within the remote plasma source and includes a distribution of charged species (electrons and ions). The charge-depleted deposition medium contains a reduced concentration of the charged species and permits deposition of thin film materials having lower defect concentration. The thin film material may be a solar material.
Abstract:
A method and apparatus for forming thin film materials via a plasma deposition process in the presence of a magnetic field. A precursor is delivered to a deposition chamber and activated to form a plasma. The plasma may be initiated in the presence of a magnetic field or subjected to a magnetic field after initiation. The plasma includes ionized and neutral species derived from the precursor and the magnetic field manipulates the plasma to effect a reduction in the population of ionized species and an enhancement of the population of neutral species. A thin film material is subsequently formed from the resulting neutral-enriched deposition medium. The method permits formation of thin film materials having a low density of defects. In one embodiment, the thin film material is a photovoltaic material and the suppression of defects leads to an enhancement in photovoltaic efficiency.
Abstract:
A VHF energized plasma deposition process wherein a process gas is decomposed in a plasma so as to deposit the thin film material onto a substrate, is carried out at process gas pressures which are in the range of 0.5-2.0 torr, with substrate temperatures that do not exceed 300° C, and substrate-cathode spacings in the range of 10-50 millimeters. Deposition rates are at least 5 angstroms per second. The present method provides for the high speed deposition of semiconductor materials having a quality at least equivalent to materials produced at a much lower deposition rate.
Abstract:
The present invention comprises an electrode arrangement for a coating device with a stationary first electrode (3) and a second movable electrode (18), whose principle surfaces are opposing each other during coating, wherein the second electrode (18) may be moved along a plane parallel to the opposing principle surfaces, wherein at least one end face of an electrode running transversely to the principal surface an electrical shield (12, 19, 13) is provided, which extends at least partially parallel to the end face of one electrode, wherein at least one part (14) of the shield is formed so as to be movable.
Abstract:
L'invention concerne un procédé et un dispositif de traitement par plasma de substrats métalliques ou isolants (3) défilant d'une manière sensiblement continue dans une chambre à vide présentant une zone de traitement (2), le plasma étant maintenu par couplage inductif radio-fréquence dans la zone de traitement (2) au moyen d'un inducteur (4) connecté à un générateur radio-fréquence, dans lequel l'on protège l'inducteur (4) de toute contamination par la matière émise par la surface des substrats (3) par un écran de Faraday (7) qui est positionné entre le plasma et l'inducteur (4), et dans lequel l'on polarise électriquement positivement en moyenne l'écran de Faraday (7) par rapport aux substrats (3) ou par rapport à une contre-électrode présent dans le plasma.
Abstract:
The present invention provides a continuous surface treatment apparatus of tridimensional-shaped polymer by plasma ion implantation, which includes a high frequency power supplying device for generating plasma for injecting ions, and having a high frequency power supplying unit, a matching box, and an antenna, a gas introducing unit for supplying process gas to be ionized for plasma, a gas supplying unit connected to the gas introducing unit, a processing chamber having a vacuum pump and the like, a leading-in chamber, and an leading-out chamber, which are installed before and after the processing chamber respectively with adjacent thereto, and are adapted to be gas-exhaustible, a transferring unit installed to sequentially pass by through the leading-in chamber, the processing chamber, and the leading-out chamber, transferring means for driving the transferring unit, and doors being positioned in the leading-in chamber and the leading-out chamber respectively, and in partitions between the leading-in chamber and the processing chamber, and between the processing chamber and the leading-out chamber respectively, and automatically capable of being opened/closed so that the transferring unit can pass by therethrough.
Abstract:
Die Erfindung bezieht sich auf die Abscheidung optischer Präzisionsschichten mit hoher Uniformität, Präzision, Partikelfreiheit und geringer Absorption auf dem Substrat. Dazu wird ein Verfahren und eine Vorrichtung vorgeschlagen. Ansatz ist die Verwendung von Targetmaterialien sowie ggf. von Oberflächen im Sputterbereich. Es wird eine besonders hohe Uniformität als auch eine besonders geringe Restabsorption mit diesen Materialien erreicht. Die Erfindung eignet sich zur Herstellung optischer Dünnschichtfilter, wie sie beispielsweise in der Laser-Materialbearbeitung, Laserkomponenten, optischen Sensoren für die Messtechnik, oder in der medizinischen Diagnostik zum Einsatz kommen.
Abstract:
An apparatus for coating a thin film on a flexible substrate is described. The apparatus includes a coating drum having an outer surface for guiding the flexible substrate through a first vacuum processing region and at least one second vacuum processing region, a gas separation unit for separating the first vacuum processing region and at least one second vacuum processing region and adapted to form a slit through which the flexible substrate can pass between the outer surface of the coating drum and the gas separation unit, wherein the gas separation unit is adapted to control fluid communication between the first processing region and the second processing region by adjusting the position of the gas separation unit.