Abstract:
A laser scribing device 20 is provided which comprises at least a laser light source 21. The laser light source 21 may generate a laser beam 22 for scribing cell lines 12a, 12b,...;13a, 13b,...; 14a, 14b,... to form a patterned solar cell module 10. Furthermore, the laser 21 may emit a light beam 23 for generating a light spot 24 on the surface of the solar cell module. The light beam 23 may be modulated compared with the light beam 22 used for the scribing process. By means of the light spot 24 a particular region of the active area 18 of the solar cell module may be illuminated, and the voltage V oc (L) may be measured at a voltage measurement device 25. The voltage measurement device 25 is connected between the negative contact area 15 and the positive contact area 16 of the solar cell module 10. The measured voltage V oc (L) depends on the location of the laser spot 24 on the solar cell module 10 and the intensity of the laser spot 24.
Abstract:
An output beam from a laser is directed into an acousto-optic cell. The acousto- optic cell is driven by RF voltages at four different frequencies. A portion of the laser output beam is diffracted by the acousto-optic cell at four different angles to the laser output beam. This provides four secondary beams. The magnitude of the RF voltages applied to the acousto-optic cell and the power in the laser output beam may be cooperatively varied to provide a predetermined power in each of the secondary beams. The four secondary beams are directed into four beam separating optical fibers connected to four transport optical fibers for transporting the secondary beams to a location remote from the laser. Power in the beams is monitored at the output ends of the four optical fibers for controlling the magnitude of the RF voltages. All four beams are focused into the beam-separating fibers by a single lens.
Abstract:
Eine Laserbearbeitungsmaschine (11) umfasst eine Einrichtung zur Erfassung von Veränderungen eines Laserstrahls (14) innerhalb einer Laserbearbeitungsmaschine zwischen einem Auskoppelspiegel (18) des Lasers (19) und einem Laserbearbeitungskopf (20), wobei ein Sensor (6; 16) zur Erfassung der Laserstrahlveränderungen vor dem Laserbearbeitungskopf (20) angeordnet ist, und eine Daten des Sensors (16) erfassende und auswertende sowie einen adaptiven Spiegel (12) ansteuernde Steuerung (17) vorgesehen ist. Der adaptive Spiegel (12) ist nahe am Auskoppelspiegel (18) angeordnet.
Abstract:
Eine Laserbearbeitungsmaschine umfasst eine Optik zur Strahlführung und Fokussierung eines Laserstrahls (5), eine Einrichtung zur Ausleuchtung der Düsenbohrung (10) einer Laserbearbeitungsdüse (10') des Laserbearbeitungskopfs, eine Einrichtung zur Bestimmung der Mitte der Düsenbohrung (10) mithilfe der Ausleuchtung und eine Einrichtung zur Bestimmung des Abstandes des Laserstrahlfokus zur Düsenmitte. Eine separate Lichtquelle (11) zur Ausleuchtung der Düsenbohrung (10) und ein optisches Element (13) der Strahlführung des Laserstrahls (5) zur Einkoppelung des Lichtstrahls (14) sind vorgesehen.
Abstract:
The present invention provides improved methods and systems for laser beam positioning, shape profile, size profile, drift, and/or deflection calibration using an image capture device (20), such as a microscope camera, for enhanced calibration accuracy and precision. The methods and systems are particularly suite for iris calibration and hysteresis measurement of a variable diameter aperture. One method for calibrating laser pulses form a laser eye surgery system using an image capture device (28) on the calibration surface (18). The laser eye surgery system is calibrated by comparing the image of the mark (28) on the calibration surface (18) to the image of the known object.
Abstract:
An active laser energy delivery system includes a relay imaging system. Input optics arranged to receive the laser energy, a transmitting mirror having adjustable angle of incidence relative to the input optics, and a robot mounted processing head including an optical assembly are configured to direct laser energy toward the movable target image plane. The laser energy follows an optical path including an essentially straight segment from the transmitting mirror to the receiving mirror, having a variable length and a variable angle relative to the input optics. Diagnostics on the processing head facilitate operation.
Abstract:
A gas discharge laser crystallization apparatus and method for performing a transformation of a crystal makeup or orientation in a film on a workpiece is disclosed, which may comprise a master oscillator power amplifier MOPA or power oscillator power amplifier configured XeF laser system producing a laser output light pulse beam at a high repetition rate and high power with a pulse to pulse dose control; an optical system producing an elongated thin pulsed working beam from the laser output light pulse beam. The apparatus may further comprise the laser system is configured as a POPA laser system and further comprising: relay optics operative to direct a first output laser light pulse beam from a first laser PO unit into a second laser PA unit; and, a timing and control module timing the creation of a gas discharge in the first and second laser units within plus or minus 3 ns, to produce the a second laser output light pulse beam as an amplification of the first laser output light pulse beam. The system may comprise divergence control in the oscillator laser unit. Divergence control may comprise an unstable resonator arrangement. The system may further comprise a beam pointing control mechanism intermediate the laser and the workpiece and a beam position control mechanism intermediate the laser and the workpiece. Beam parameter metrology may provide active feedback control to the beam pointing mechanism and active feedback control to the beam position control mechanism.
Abstract:
A gas discharge laser crystallization apparatus and method for performing a transformation of a crystal makeup or orientation in a film on a workpiece is disclosed, which may comprise a master oscillator power amplifier MOPA or power oscillator power amplifier configured XeF laser system producing a laser output light pulse beam at a high repetition rate and high power with a pulse to pulse dose control; an optical system producing an elongated thin pulsed working beam from the laser output light pulse beam. The apparatus may further comprise the laser system is configured as a POPA laser system and further comprising: relay optics operative to direct a first output laser light pulse beam from a first laser PO unit into a second laser PA unit; and, a timing and control module timing the creation of a gas discharge in the first and second laser units within plus or minus 3 ns, to produce the a second laser output light pulse beam as an amplification of the first laser output light pulse beam. The system may comprise divergence control in the oscillator laser unit. Divergence control may comprise an unstable resonator arrangement. The system may further comprise a beam pointing control mechanism intermediate the laser and the workpiece and a beam position control mechanism intermediate the laser and the workpiece. Beam parameter metrology may provide active feedback control to the beam pointing mechanism and active feedback control to the beam position control mechanism.
Abstract:
According to the invention, the analysis and monitoring of the light intensity distribution over the cross-section of a laser beam (1) may be achieved, whereby the laser beam (1) is recorded by means of interferometry using a laser mirror (2), based on the various light intensities incident on the laser mirror (2).
Abstract:
Zur Kalibrierung des optischen Systems einer eine Laserquelle (1), eine Ablenkeinheit (4) und eine Abbildungseinheit (5) aufweisenden Lasermaschine wird zunächst eine erste Probeplatte in der Fokusebene (Z1) der Abbildungseinheit angeordnet, wobei vorgegebene Rasterpunkte durch den Laserstrahl (2) markiert werden. Danach werden die markierten Punkte über eine Kamera (6) vermessen, und ihre Positionswerte werden mit den vorgegebenen Positionswerten der Zielpunkte verglichen, um daraus erste Korrekturwerte abzuleiten und zu speichern. Danach wird eine zweite Probeplatte in einer von der Fokusebene beabstandeten zweiten Kalibrierebene (Z2) angeordnet und ebenfalls durch den Laserstrahl angesteuert und mit Markierungen versehen. Die zweite Probeplatte wird ebenfalls über die Kamera (6) vermessen, und die vermessenen Positionen der Markierungen werden mit den Positionen der Zielpunkte verglichen, um zweite Korrekturwerte abzuleiten und zu speichern. Aus den gespeicherten ersten und zweiten Korrekturwerten der beiden Ebenen können dann für beliebige Zielpunkte im räumlichen Bereich zwischen der Fokusebene (Z1) und der zweiten Kalibrierebene (Z2) durch Interpolation Korrekturwerte ermittelt und für die Ansteuerung der Ablenkeinheit (4) verwendet werden.