Abstract:
The invention relates to a method for producing tetrafluorosilane by decomposing hexafluorosilicic acid with sulfuric acid, which comprises: step 1 of decomposing hexafluorosilicic acid in concentrated sulfuric acid in the first reactor to give SiF 4 and HF and taking out the SiF 4 ; step 2 of transferring part of the concentrated sulfuric acid solution of step 1 containing HF into the second reactor to react the HF with silicon dioxide fed thereinto, thereby producing SiF 4 containing (SiF 3 ) 2 0; and step 3 of bringing the reaction product of step 2 containing (SiF 3 ) 2 O and SiF 4 to the first reactor to react (SiF 3 ) 2 O contained in the reaction product with HF to convert it into SiF 4 and then taking out the SiF4 along with SiF 4 formed in step 1. According to the invention, high-purity SiF 4 can be obtained with (SiF 3 ) 2 Obeing reduced, free from HF generated as a problematic side product in conventional method.
Abstract:
Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (dl) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
Abstract:
A method of forming an optical fiber by heat treating a consolidated glass article, doped with at least one refractive index-modifying dopant, at a temperature between about 1100?C and 1400?C and for a time between about 1 hour and 12 hours in a helium-containing atmosphere. The consolidated glass article is an optical fiber precursor. The optical fiber drawn from the heat treated consolidated glass article exhibits an attenuation lower than an optical fiber drawn from a substantially identical optical fiber precursor that has not been heat treated in accordance with the present invention.
Abstract:
A method for manufacturing an optical fiber preform including a dehydration process by photochemical reaction is provided. The method performs forming a clad and a core according to a predetermined refractive index profile by repeated deposition and sintering of soot particles by means of oxidation of soot generation gas, and a dehydration step for removing moisture and hydroxyl groups from a soot deposition region by means of photochemical reaction is executed between the deposition and sintering. The dehydration step activates dehydration gas into ionic or atomic state by irradiating light, in a wavelength range capable of inducing activation of the dehydration gas, from light source to the dehydration gas including chlorine and supplied to the soot deposition region, and then adsorbs the activated dehydration gas onto surface of the soot in order to induce dehydration reaction with moisture or hydroxyl groups.
Abstract:
A method of producing a doped optical fiber preform from a silica-based preform is disclosed which includes, in a first gas exposure step, exposing the silica soot portion to a first gaseous environment containing a chlorine-containing compound for a time and at one or more temperatures below the consolidation temperature of the silica soot portion, in a second gas exposure step, exposing the silica soot portion to a second gaseous environment containing a second gaseous compound for a time and at one or more temperatures below the consolidation temperature of the silica soot portion, and in a third gas exposure step, exposing the silica soot portion to a third gaseous environment containing a chlorine-containing compound for a time and at one or more temperatures below the consolidation temperature of the silica soot portion and higher than at least one of the temperatures in the first gas exposure step.
Abstract:
An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen-18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
Abstract translation:提供了一种同位素改性的二氧化硅基光纤,其比传统的二氧化硅基光纤具有更低的损耗,更宽的带宽和更广泛的拉曼增益光谱特性。 更重,较不自然丰富的硅或氧的同位素代替较轻的,更自然的丰富的同位素,以将红外吸收转移到稍长的波长。 在一个实施方案中,氧-18至少在纤维的核心区域中替代天然丰富的氧-16。 所得到的同位素改变的光纤比常规光纤的损耗最小为0.044 dB / km,对于0.044-0.034 dB / km之间的损耗范围,宽带宽为17%。 纤维可以通过等离子体化学气相沉积技术容易地用传统的纤维制造设备制造。 当在纤维的纤芯区域中进行氧-16取代氧-16的50%时,拉曼增益谱显着扩大。
Abstract:
Optical waveguide fiber having low water peak as well as optical waveguide fiber preforms and methods of making optical waveguide fiber preforms from which low water peak and/or low hydrogen aged attenuation optical waveguide fibers are formed, including optical waveguide fiber and preforms made via OVD. The fibers may be hydrogen resistant, i.e. exhibit low hydrogen aged attenuation. A low water peak, hydrogen resistant optical waveguide fiber is disclosed which exhibits an optical attenuation at a wavelength of about 1383 nm which is less than or equal to an optical attenuation exhibited at a wavelength of about 1310 nm.
Abstract:
A process is suited for producing silica glass bodies having refractive index profiles. The process involves providing a porous body having an initially uniform dopant distribution, heating the porous body in a halogen-containing atmosphere to produce a dopant gradient, and densifying the porous body at an elevated temperature to produce the glass body. The process is more cost-effective than those previously known, and allows for high reproducibility of the refractive index gradients of the bodies produced.
Abstract:
The disclosed invention relates to the use of a specific drying agent in a process for drying glass soot preforms. The drying agent includes at least one halide and at least one reducing agent. Preferably, the reducing agent includes a compound that will react with an oxygen by-product of the reaction of the halide and water, or the reaction of the halide and an impurity in the preform. The method includes disposing the soot preform in a furnace, charging the furnace with the drying agent of halide and reducing agent and supplying heat to the furnace. Suitable drying agents for use in the process disclosed include a mixture of Cl2 and CO; a mixture of Cl2, CO and CO2; and POCl3: the latter being an example where the halide and reducing agent are embodied by a single compound.