Abstract:
An exhaust gas purification device comprises a plurality of branch exhaust passages (2, 3), a converging exhaust passage (110), a shut-off valve (4) for performing changing-over between the inflow and the shut-off of exhaust gas into the branch exhaust passages (2, 3), a nitrogen oxide adsorbing member (5) for temporarily adsorbing nitrogen oxides in an excess air atmosphere, desorbing the adsorbed nitrogen oxides in a reduction atmosphere, and reducing the nitrogen oxides in the reduction atmosphere to produce ammonia, a first combustor (6) which is disposed further nearer to the exhaust upstream side than the nitrogen oxide adsorbent (5), and which includes an air supply means and converts the air supplied from the air supply means into the reduction atmosphere, and a selective reduction catalyst (19) which is provided in the converging exhaust passage (110) and selectively reduces the nitrogen oxides with use of ammonia as a reducing agent.
Abstract:
本内燃機関の排気浄化装置は、アンモニアを保持可能な選択還元型NO X 触媒装置2と、選択還元型NO X 触媒装置の上流側に配置された吸蔵還元型NO X 触媒装置3とを具備し、アンモニア生成期間を開始 するために吸蔵還元型NO X 触媒装置へ流入する排気ガスの空燃比をリーン空燃比からリッチ空燃比へ変 化させ、アンモニア生成期間を終了するために吸蔵還元型NO X 触媒装置へ流入する排気ガスの空燃比をリッチ空燃比からリーン空燃比へ変化させる内燃機関の排気浄化装置において、吸蔵還元型NO X 触媒装置の温度が設定温度未満である時には、吸蔵還元型NO X 触媒装置の温度が設定温度以上である時に比較して、吸蔵還元型NO X 触媒装置に保持されているNO X 量が少ない時に、アンモニア生成期間を開始する。
Abstract:
In situations where the demand for syngas is intermittent, a fuel processor is operated to provide a high absolute hydrogen and carbon monoxide production, rather than to give a high fuel-specific hydrogen and carbon monoxide production. When a syngas generator is operated to intermittently produce syngas, a heating process can be performed between periods of syngas demand in order to keep the fuel processor within a desired temperature range. The heating process can comprise various steps or events including performing a heating event, allowing a standby period, and/or performing a carbon conversion event. Carbon formed during the process of converting fuel to syngas can be advantageously converted to maintain the temperature of the fuel processor within a desired range in between periods of syngas demand. A predictive method can be employed to control at least a portion of the heating process.
Abstract:
A NOx reduction system having a separator is disclosed for use with combustion engine exhaust. The system includes a combustion engine having an exhaust manifold. A separator is positioned downstream of the engine exhaust manifold in an exhaust system. The separator is configured to extract steam from the exhaust in the exhaust system and an element is configured to receive the extracted steam and produce a NOx reducing agent that is used to reduce the amount of NOx in the exhaust before release into the atmosphere.
Abstract:
Beschrieben wird ein Verfahren zur Verminderung von Stickoxiden im Abgasstrom von Brennkraftmaschinen, insbesondere eines Kraftfahrzeug-Verbrennungsmotors, wobei ein Luft/Kraftstoffgemisch im Brennraum der Brennkraftmaschine in Gegenwart eines Kraftstoffadditivs verbrannt wird und dabei das Kraftstoffadditiv zerfällt und der Abgasstrom durch mindestens einen stromabwärts vom Brennraum angeordneten Katalysator geleitet wird. Dieses Verfahren ist dadurch gekennzeichnet, dass ein Kraftstoffadditiv eingesetzt wird, dadurch gekennzeichnet, dass ein Kraftstoffadditiv eingesetzt wird, das im Brennraum unter Freisetzung von Ammoniak zerfällt, und der Ammoniak enthaltende Abgasstrom zur Verminderung der Konzentration der darin enthaltenen Stickoxide durch mindestens einen stromabwärts vom Brennraum angeordneten SCR-Katalysator geleitet wird. Das erfindungsgemäß Verfahren ist höchst wirksam in der Herabsetzung des Stickoxid-Gehalts im Abgasstrom einer Brennkraftmaschine, ohne dass ein Abgasnachbehandlungssystem aufwendig ausgebildet und der Bauraum vergrößert werden muss.
Abstract:
A method and apparatus for reducing the percentage of nitrogen dioxide and nitrogen monoxide in an exhaust gas stream of an internal combustion engine, comprising the steps of injecting a hydrocarbon compound and optionally hydrogen into the exhaust gas stream; passing the exhaust gas through a first catalyst for selective reduction of a portion of the nitrogen oxides to nitrogen, ammonia, and N-containing species; passing the exhaust gas through a second catalyst for selective reduction of a portion of the nitrogen oxides with ammonia to molecular nitrogen; sensing ammonia concentration in the exhaust gas stream after passage through either or both of the first and second catalysts; and controlling by a controller in a feedback loop the injecting to an amount of hydrocarbon that will produce a predetermined concentration of ammonia and nitrogen oxides at the sensor that will lead to high NOx conversion.
Abstract:
Engine exhaust gas feedstream NOx emissions aftertreatment includes a three-way catalytic device connected upstream of an ammonia-selective catalytic reduction device including a base metal. Engine operation can be modulated to generate an engine-out exhaust gas feedstream that converts to ammonia on the three-way catalytic device. The ammonia is stored on the ammonia-selective catalytic reduction device, and used to reduce NOx emissions in the exhaust gas feedstream.
Abstract:
Engine exhaust gas feedstream NOx emissions aftertreatment includes a catalytic device and first and second ammonia selective catalytic reduction devices. The first and second ammonia-selective catalytic reduction devices each includes a base metal. Engine operation can be modulated to generate an engine-out exhaust gas feedstream that converts to ammonia. The ammonia is stored on the first and second ammonia selective catalytic reduction devices and used to reduce NOx emissions in the exhaust gas feedstream.