Abstract:
A structure (10) having a number of traces (11A-11N) passing through a region (11) is evaluated by using a beam (12) of electromagnetic radiation to illuminate the region, and generating an electrical signal that indicates an attribute of a portion (also called "reflected portion") of the beam reflected from the region. The just-described acts of "illuminating" and "generating" are repeated in another region, followed by a comparison of the generated signals to identify variation of a property between the two regions. Such measurements can identify variations in material properties (or dimensions) between different regions in a single semiconductor wafer of the type used in fabrication of integrated circuit dice, or even between multiple such wafers. In one embodiment, the traces are each substantially parallel to and adjacent to the other, and the beam has wavelength greater than or equal to a pitch between at least two of the traces. In one implementation the beam is polarized, and can be used in several ways, including, e.g., orienting the beam so that the beam is polarized in a direction parallel to, perpendicular to, or at 45 DEG to the traces. Energy polarized parallel to the traces is reflected by the traces, whereas energy polarized perpendicular to the traces passes between the traces and is reflected from underneath the traces. Measurements of the reflected light provide an indication of changes in properties of a wafer during a fabrication process.
Abstract:
Heat is applied to a conductive structure (200) by a laser beam (251), another laser beam (250), and the temperature at or near the point of heat application is measured. The measured temperature indicates the integrity or the defectiveness of various features in the conductive structure, near the point of heat application.
Abstract:
An apparatus measures a property of an optically absorbing layer (416) by using a lens (415) to focus a heating beam (403) for a laser (401) on a region of the layer (416), modulating the power from a laser driver circuit (421) to the laser to modulate the heating beam (403) at a predetermined frequency that is selected to be sufficiently low to ensure that at any time the temperature of the layer is approximately equal to a temperature of the layer when heated by an unmodulated beam, and using a detector (420) to measure the power of another beam from another laser (405) that is reflected from the heated region. The measurement can be used to adjust a process parameter that controls a fabrication process.
Abstract:
Any semiconductor wafer fabrication process may be changed to monitor lateral abruptness of doped layers as an additional step in the wafer fabrication process. In one embodiment, a test structure including one or more doped regions is formed in a production wafer (e.g. simultaneously with one or more transistors) and one or more dimension(s) of the test structure are measured, and used as an estimate of lateral abruptness in other doped regions in the wafer, e.g. in the simultaneously formed transistors. Doped regions in test structures can be located at regularly spaced intervals relative to one another, or alternatively may be located with varying spacings between adjacent doped regions. Alternatively or in addition, multiple test structures may be formed in a single wafer, with doped regions at regular spatial intervals in each test structure, while different test structures have different spatial intervals.
Abstract:
An apparatus measures a property of a layer (such as the sheet resistance of a conductive layer) by performing the following method: (1) focusing the heating beam on the heated a region (also called "heated region") of the conductive layer (2) modulating the power of the heating beam at a predetermined frequency that is selected to be sufficiently low to ensure that at any time the temperature of the optically absorbing layer is approximately equal to (e.g., within 90 % of) a temperature of the optically absorbing layer when heated by an unmodulated beam, and (3) measuring the power of another beam that is (a) reflected by the heated region, and (b) modulated in phase with modulation of the heating beam. The measurement in act (3) can be used directly as a measure of the resistance (per unit area) of a conductive pad formed by patterning the conductive layer. Acts (1)-(3) can be repeated during fabrication of a semiconductor wafer, at each of a number or regions on a conductive layer, and any change in measurement indicates a corresponding change in resistance of the layer. When the measurement changes by more than a predetermined amount (e.g., by 10 %), a process parameter that controls the fabrication process is changed to return the measurement to normal in the next wafer.
Abstract:
A method and apparatus measure properties of two layers of a damascene structure (e.g. a silicon wafer during fabrication), and use the two measurements to identify a location as having voids. The two measurements may be used in any manner, e.g. compared to one another, and voids are deemed to be present when the two measurements diverge from each other. Depending on the embodiment, any properties of the two layers that depend on the dimensions of the features in the wafer may be measured in acts (122) and (123) by any method well known in the art. In response to the detection of voids, a process parameter used in fabrication of the damascene structure may be changed, to reduce or eliminate voids in to-be-formed structures.
Abstract:
A structure (10) having a number of traces (11A-11N) passing through a region (11) is evaluated by using a beam (12) of electromagnetic radiation to illuminate the region, and generating an electrical signal that indicates an attribute of a portion (also called "reflected portion") of the beam reflected from the region. The just-described acts of "illuminating" and "generating" are repeated in another region, followed by a comparison of the generated signals to identify variation of a property between the two regions. Such measurements can identify variations in material properties (or dimensions) between different regions in a single semiconductor wafer of the type used in fabrication of integrated circuit dice, or even between multiple such wafers. In one embodiment, the traces are each substantially parallel to and adjacent to the other, and the beam has wavelength greater than or equal to a pitch between at least two of the traces. In one implementation the beam is polarized, and can be used in several ways, including, e.g., orienting the beam so that the beam is polarized in a direction parallel to, perpendicular to, or at 45 DEG to the traces. Energy polarized parallel to the traces is reflected by the traces, whereas energy polarized perpendicular to the traces passes between the traces and is reflected from underneath the traces. Measurements of the reflected light provide an indication of changes in properties of a wafer during a fabrication process.
Abstract:
Any semiconductor wafer fabrication process may be changed to monitor lateral abruptness of doped layers as an additional step in the wafer fabricating process. In one embodiment, a test structure including one or more doped regions is formed in a production wafer (e.g. simultaneously with one or more transistors) and one or more dimension(s) of the test structure are measured, and used as an estimate of lateral abruptness in other doped regions in the wafer, e.g. in the simultaneously formed transistors. Doped regions in test structures can be located at regularly spaced intervals relative to one another, or alternatively may be located with varying spacings between adjacent doped regions. Alternatively or in addition, multiple test structures may be formed in a single wafer, with doped regions at regular spatial intervals in each test structure, while different test structures have different spatial intervals.
Abstract:
Heat is applied to a conductive structure that includes one or more vias, and the temperature at or near the point of heat application is measured. The measured temperature indicates the integrity or the defectiveness of various features (e.g. vias and/or traces) in the conductive structure, near the point of heat application. Specifically, a higher temperature measurement (as compared to a measurement in a reference structure) indicates a reduced heat transfer from the point of heat application, and therefore indicates a defect. The reference structure can be in the same die as the conductive structure (e.g. to provide a baseline) or outside the die but in the same wafer (e.g. in a test structure) or outside the wafer (e.g. in a reference wafer), depending on the embodiment.
Abstract:
A method and apparatus measure properties of two layers of a damascene structure (e.g. a silicon wafer during fabrication), and use the two measurements to identify a location as having voids. The two measurements may be used in any manner, e.g. compared to one another, and voids are deemed to be present when the two measurements diverge from each other. Depending on the embodiment, any properties of the two layers that depend on the dimensions of the features in the wafer may be measured in acts (122) and (123) by any method well known in the art. In response to the detection of voids, a process parameter used in fabrication of the damascene structure may be changed, to reduce or eliminate voids in to-be-formed structures.