Abstract:
Provided are compositions, methods and systems including cementitious compositions and reinforcing materials wherein the cementitious composition comprises a metastable component.
Abstract:
Provided herein are compositions, methods, and systems for a material containing metastable carbonate and stabilizer. Methods for making the compositions and using the compositions are also provided.
Abstract:
The present invention provides an expression vector for preventing or inhibiting HlV entry, fusion or replication in mammalian cells. In particular, the invention provides a recombinant retroviral vector that encodes an inhibitor of a HlV co-receptor, such as CCR5 or CXCR4, and a protein that inhibits HIV fusion to target cells and/or HIV replication. Pharmaceutical compositions comprising such constructs and methods of use thereof to prevent or treat HIV infection in a patient are also disclosed.
Abstract:
The present invention provides a vector or vector containing composition comprising a spumavirus backbone and a antigen-encoding nucleic acid. The present invention also provides methods of treating or preventing a condition resulting from a viral, bacterial, or parasitic infection in a subject comprising administering to the subject an effective amount of the vector or vector containing composition comprising a spumavirus backbone and an antigen-encoding nucleic acid. Also provided in the present invention are methods of treating a condition resulting from a cancer in a subject comprising administering to the subject an effective amount of the vector or vector containing composition comprising a spumavirus backbone and an antigen-encoding nucleic acid.
Abstract:
Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.
Abstract:
In one aspect, the invention provides methods and compositions for the expression of small RNA molecules within a cell using a retroviral vector (Fig. IA). Small interfering RNA (siRNA) can be expressed using the methods of the invention within a cell. In a further aspect, the invention provides methods for producing siRNA encoding lentivirus where the siRNA activity may interfere with the lentiviral life cycle. In yet a further aspect, the invention provides methods for expression of a small RNA molecule within a cell, such as an siRNA capable of downregulating CCR5, wherein expression of the small RNA molecule is relatively non-cytotoxic to the cell. The invention also includes small RNA molecules, such as an siRNA capable of downregulating CCR5, that are relatively non-cytotoxic to cells.
Abstract:
In one aspect, the invention provides methods and compositions for the expression of small RNA molecules within a cell using a retroviral vector (Fig. IA). Small interfering RNA (siRNA) can be expressed using the methods of the invention within a cell. In a further aspect, the invention provides methods for producing siRNA encoding lentivirus where the siRNA activity may interfere with the lentiviral life cycle. In yet a further aspect, the invention provides methods for expression of a small RNA molecule within a cell, such as an siRNA capable of downregulating CCR5, wherein expression of the small RNA molecule is relatively non-cytotoxic to the cell. The invention also includes small RNA molecules, such as an siRNA capable of downregulating CCR5, that are relatively non-cytotoxic to cells.
Abstract:
The present invention provides a vector or vector containing composition comprising a spumavirus backbone and a antigen-encoding nucleic acid. The present invention also provides methods of treating or preventing a condition resulting from a viral, bacterial, or parasitic infection in a subject comprising administering to the subject an effective amount of the vector or vector containing composition comprising a spumavirus backbone and an antigen-encoding nucleic acid. Also provided in the present invention are methods of treating a condition resulting from a cancer in a subject comprising administering to the subject an effective amount of the vector or vector containing composition comprising a spumavirus backbone and an antigen-encoding nucleic acid.
Abstract:
The present disclosure is directed to polypeptides, such as polypeptides comprising an alkaline phosphatase and a bone-targeting moiety. Also disclosed are expression vectors, such as lentiviral expression vectors, including a nucleotide sequence encoding a polypeptide. Also disclosed are methods of treating hypophosphatasia or treating, mitigating, or preventing one or more symptoms of hypophosphatasia by administering to a subject in need of treatment thereof the disclosed polypeptides or host cells transduced to express any of the disclosed polypeptides.
Abstract:
The invention provides novel methods, materials and systems that can be used to generate viral vectors having altered tissue and cell targeting abilities. In illustrative embodiments of the invention, the specificity of lentiviral vectors was modulated by a thin polymer shell that synthesized and coupled to the viral envelope in situ. The polymer shell can confers such vectors with new targeting ability via agents such as cyclic RGD (cRGD) peptides that are coupled to the polymer shell. These polymer encapsulated viral vectors exhibit a number of highly desirable characteristics including a higher thermal stability, resistance to serum inactivation in vivo , and an ability to infect dividing and non-dividing cells with high efficiencies.