Abstract:
Methods, devices, and systems for performing intermittent detection during analytical reactions are provided. Such methods facilitate collection of reaction data from disparate reaction times. Further, such methods are useful for reducing photo-induced damage of one or more reactants in an illuminated analytical reaction at a given reaction time. In preferred embodiments, the reaction mixture is subjected to at least one illuminated and non-illuminated period and allowed to proceed such that the time in which the reaction mixture is illuminated is less than a photo-induced damage threshold period.
Abstract:
The present invention discloses a surface treatment to nucleate, grow, detach, implode and collapse vapor bubbles for various cleaning and surface treatment applications. The process can be accomplished by using alternating temperature and chemical, in addition to vacuum/pressure to produce a pulsing and continuous action within a fluid. In an aspect, a thermal cycle nucleation process employs temperature cycling with controlled heating and cooling processes, and with or without vacuum cycles for cleaning delicate surfaces. In another aspect, a chemical cycle nucleation employs varying concentrations fluid mixtures of chemical vapors/fluids to either create, grow vapor bubbles to treat the surface by collapse or implode vapor bubbles. Different chemical vapors or liquids can form chemical mixtures directly on surfaces to inhibit or eliminate re-deposition of particle, and can be tailored to promote rapid chemical dissolving and breakdown of surface contaminates.
Abstract:
Methods and systems for preventing unacceptable communication requests from being transmitted to a network-accessible service are disclosed. A domain name server for a local network including a network-accessible service returns an address for a network security system remote from the local network in response to a request for the address of the network-accessible service. The network security system processes communication requests directed to the network-accessible service to determine whether the communication request is a network intrusion attempt. If so, the network security system performs a network intrusion prevention technique, such as discarding the communication request, generating an alert or message or storing at least a portion of the communication request. Otherwise, the network security system forwards the communication request to the network-accessible service. A firewall on the local network may discard requests destined for the network-accessible service unless the source address equals a public address of the network security system.
Abstract:
The use of antisense oligodeoxyribonucleotides (ODNs) to inhibit translation of mRNAs promises to be an important means of controlling gene expression and disease processes. ODNs are about 20 nucleotides long, so hundreds of possible targets are available in a given mRNA. An elusive goal has been to efficiently predict the best in vivo antisense target without having to study a large pool of possible ODN sequences for each mRNA. It would be a breakthrough if ODN selection could be accurately guided by the application of sequence specific parameters to an mRNA sequence. The selection of the best ODN sequence is complicated since cellular uptake, conditions at the mRNA target site, non-sequence-specific effects, sequence redundancy, and mRNA secondary structures are difficult to predict. Thermodynamic parameters for nearest-neighbor (dimer) duplex stabilities, from in vitro studies, have not been adequate predictors of in vivo hybridiztion. The methodology of this application shows that it is possible to obtain parameters for in vivo motifs, which are defined as combinations of next-nearest-neighbors, that are correlated with efficient antisense targeting. These parameters can be used to identify mRNA sequences that are binding sites for effective antisense ODNs. Next-nearest-neighbor nucleotide parameters can be derived directly from cell culture inhibition data so that in vivo conditions are taken into account.
Abstract:
A method is described for obtaining Hoogsteen-paired pyrimidine*purine duplexes, either by heating a triplex to dissociate a Watson-Crick paired pyrimidine strand or by linking two parallel strands at their 5' ends is disclosed. This duplex can be used as a new type of antisense molecule to pair with an RNA pyrimidine target sequence within an mRNA molecule. This duplex can also be used as a new type of antigene molecule to pair with a single-stranded DNA pyrimidine target sequence within the genome.
Abstract:
Methods and systems for preventing unacceptable communication requests from being transmitted to a network-accessible service are disclosed. A domain name server for a local network including a network-accessible service returns an address for a network security system remote from the local network in response to a request for the address of the network-accessible service. The network security system processes communication requests directed to the network-accessible service to determine whether the communication request is a network intrusion attempt. If so, the network security system performs a network intrusion prevention technique, such as discarding the communication request, generating an alert or message or storing at least a portion of the communication request. Otherwise, the network security system forwards the communication request to the network-accessible service. A firewall on the local network may discard requests destined for the network-accessible service unless the source address equals a public address of the network security system.
Abstract:
A closed circuit solvent cleaning method and system in which the object to be cleaned is placed in a chamber (10) and subjected to a negative gauge pressure (12) to remove air and other non-condensible gases, after which a solvent is introduced (14) to the evacuated chamber and the object is cleaned (16). Following this, the solvent is recovered (18) from the object and chamber and then the clean object is removed.
Abstract:
A seat track assembly for moving a seat assembly includes a fixed track and a movable track. A first slide member is slidably coupled to the movable track and slides between first and second positions. The first slide member slides from the first position to the second position in response to pivoting a seat back to a folded position thereby actuating a latch mechanism to an unlocking position and pivoting a hook lever to a raised position allowing movement of the seat assembly from a comfort range to an easy entry position. The first slide member slides from the second position to the first position in response to the first slide member engaging a rearward stop at a rearward end of the comfort range thereby actuating the latch mechanism to a locking position and pivoting the hook lever to a lowered position.
Abstract:
Methods, devices, and systems for performing intermittent detection during analytical reactions are provided. Such methods facilitate collection of reaction data from disparate reaction times. Further, such methods are useful for reducing photo-induced damage of one or more reactants in an illuminated analytical reaction at a given reaction time. In preferred embodiments, the reaction mixture is subjected to at least one illuminated and non-illuminated period and allowed to proceed such that the time in which the reaction mixture is illuminated is less than a photo-induced damage threshold period.
Abstract:
A method (10) of cleaning an object in an open aqueous cleaning system uses an open cleaning vessel (12) into which water used for cleaning a material or object can be introduced. A means is provided for introducing a reactant chemical (46) to the vessel to form an aqueous solution. Cleaning of the surface is in the form of bubble formation on the part that vaporizes the chemical in order to react the oxidizer in the vapor state to the exposed surface at the bubble growth area. Treatment in the form of etching or any other process in which material is removed from a solid surface displaces the liquid residue from the surface. The resulting process produces no dissolution or emulsion of the contaminant and therefore can be easily separated from the chemical cleaner.