Abstract:
Compositions, methods and systems are provided for the isolation of polymerase-nucleic acid complexes. Complexes can be separated from free enzyme by using hook molecules to target single stranded regions on the nucleic acid. Active complexes can be isolated from mixtures having both active and inactive complexes by initiating nucleic acid synthesis so as to open up a portion of a double stranded region rendering that region single stranded. Hook molecules are targeted to bind the sequences that are thus exposed. The hook molecules bound to active polymerase-nucleic acid complex are isolated, and the active polymerase-nucleic acid complexes released. Also disclosed are compositions, devices, and methods for loading molecules-of-interest onto a substrate by contacting beads having molecules-of-interest attached to them with the substrate, for example by providing a field that brings the beads into proximity or contact with the substrate and moves the beads with respect to the substrate. Such molecules-of-interest can be deposited onto substrates for single-molecule analysis.
Abstract:
Compositions, methods and systems are provided for the isolation of polymerase-nucleic acid complexes. Complexes can be separated from free enzyme by using hook molecules to target single stranded regions on the nucleic acid. Active complexes can be isolated from mixtures having both active and inactive complexes by initiating nucleic acid synthesis so as to open up a portion of a double stranded region rendering that region single stranded. Hook molecules are targeted to bind the sequences that are thus exposed. The hook molecules bound to active polymerase-nucleic acid complex are isolated, and the active polymerase-nucleic acid complexes released. Also disclosed are compositions, devices, and methods for loading molecules-of-interest onto a substrate by contacting beads having molecules-of-interest attached to them with the substrate, for example by providing a field that brings the beads into proximity or contact with the substrate and moves the beads with respect to the substrate. Such molecules-of-interest can be deposited onto substrates for single-molecule analysis.
Abstract:
Methods, devices, and systems for performing intermittent detection during analytical reactions are provided. Such methods facilitate collection of reaction data from disparate reaction times. Further, such methods are useful for reducing photo-induced damage of one or more reactants in an illuminated analytical reaction at a given reaction time. In preferred embodiments, the reaction mixture is subjected to at least one illuminated and non-illuminated period and allowed to proceed such that the time in which the reaction mixture is illuminated is less than a photo-induced damage threshold period.
Abstract:
Methods, devices, and systems for performing intermittent detection during analytical reactions are provided. Such methods facilitate collection of reaction data from disparate reaction times. Further, such methods are useful for reducing photo-induced damage of one or more reactants in an illuminated analytical reaction at a given reaction time. In preferred embodiments, the reaction mixture is subjected to at least one illuminated and non-illuminated period and allowed to proceed such that the time in which the reaction mixture is illuminated is less than a photo-induced damage threshold period.
Abstract:
Described are various embodiments of methods, devices, systems and kits for magnetic levitation-based separation of mixtures or populations of particles that include various types of particles. Some embodiments of such methods, devices, systems and kits are useful for magnetic levitation-based separation of mixtures or populations of cells that include various cell types. Some other embodiments of the described methods, devices, systems and kits are useful for magnetic levitation-based separation of mixtures or population of cellular or mixtures or population of biological molecules.
Abstract:
Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
Abstract:
Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
Abstract:
Methods of preparing nucleic acid templates and providing the nucleic acid templates to low copy number reaction volumes are provided. Related compositions of nucleic acid templates are also provided.
Abstract:
Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
Abstract:
Provided are methods and compositions for the production of linear single- stranded nucleic acids, which can be used as templates in high-throughput sequencing systems. Also provided are methods and compositions for the production of closed single- stranded nucleic acid loops, which can be used as templates in high-throughput sequencing systems.