Abstract:
Technology for communicating user equipment (UE) power consumption configurations is disclosed. One method can include selecting, at the UE, a Power Preference Indication (PPI) state of a power consumption configuration of the UE. The UE can receive, from a source evolved node B (eNB), instructions to begin a PPI Prohibit Event Interval during a handover from the source eNB to a target eNB, wherein the UE cannot send the PPI state to the source eNB during the PPI Prohibit Event Interval. The UE can send the PPI state to the target eNB after the PPI Prohibit Event Interval ends and handover has either successfully completed or failed from the source eNB to the target eNB.
Abstract:
Technology for communicating power preference indication (PPI) message is described. A user equipment (UE) may receive PPI configuration information, from an evolved node B (eNB), wherein the PPI configuration information includes a predetermined threshold for a number of PPI messages that the UE can communicate to the eNB during a defined time window. The UE may communicate a plurality of PPI messages after sending a low power consumption configuration to the eNB during the defined time window, wherein the plurality of PPI messages each indicate a change in preferred power consumption configuration. The UE may detect that the plurality of PPI messages exceeds the predetermined threshold for the number of PPI messages that the UE can communicate to the eNB during the defined time window as defined in the PPI configuration information. The UE may initiate a threshold timer in response to the plurality of PPI messages exceeding the predetermined threshold to restrict additional PPI messages from being communicated to the eNB until expiration of the threshold timer.
Abstract:
Generally, this disclosure provides apparatus and methods for improved signaling of User Equipment (UE) assistance information in a wireless network. The UE device may include a processing circuit configured to generate an assistance information message including a power preference indicator (PPI) and mobility state information (MSI), the PPI and the MSI associated with the UE; a signal generation module configured to generate a Medium Access Control (MAC) layer Control Element (CE) signal, the MAC CE signal including the assistance information message; and a transmitter circuit configured to transmit the MAC CE signal to an evolved Node B (eNB) of a wireless network associated with the UE, the MAC CE signal transmitted on an uplink shared channel (UL-SCH). The assistance information message may also be generated as a Radio Resource Control (RRC) message and transmitted on an uplink dedicated control channel (UL-DCCH).
Abstract:
Technology is discussed for reducing the frequency of signaling overhead and power consumption on wireless mobile devices employed to support internet applications in a Wireless Wide Area Network (WWAN). Demands for battery power and signaling overhead frequently arise to support background messages of little significance and/or urgency when internet applications are unattended on wireless mobile device attempting to conserve power. An identification module can be triggered to identify such background messages, based on a variety of factors. The identification module can also determine whether to buffer and/or drop such messages with information local to the wireless mobile devices and/or in such background messages. Such buffering and dropping measures can reduce the frequency with which wireless mobile devices consume large amounts of power and/or require signaling overhead to send and receive these background messages.
Abstract:
An apparatus and method for initiating discontinuous reception (DRX) operation in a user equipment (UE) are disclosed herein. Applications running on the UE are monitored by the UE to identify one or more inactivity trigger events associated with the application(s). The UE includes an application-radio cross layer to process the application information, including the inactivity trigger event, for use by a radio layer. The radio layer of the UE determines initiation of the DRX operation in accordance with the application information, including the inactivity trigger event, provided by the application-radio cross layer and device characteristics information.
Abstract:
Embodiments of user equipment (UE) and methods for application-agnostic discontinuous reception (DRX) triggering are generally described herein. In some embodiments, a UE is configured to monitor buffer status history and traffic activity history, and trigger DRX mode activation based on the buffer status and the traffic activity history. In some embodiments, the UE may determine a probability, based on the buffer status history and the traffic activity history, that a level of traffic activity that cannot be handled during DRX mode would occur. In these embodiments, the UE may trigger DRX mode activation when the probability is below a threshold.
Abstract:
Measurement requirements for user equipment may be reduced or eliminated where the user equipment is a fixed device. In such case, the measurement requirement may be less useful. In machine-to-machine communications, bandwidth may be increased and power consumption may be reduced in some embodiments.
Abstract:
Techniques are described for a device to request a new service flow for best effort (BE) category traffic to assign a priority to the new service flow. For example, a Traffic Priority parameter in a media access control (MAC) message can be used to transmit the priority level for a new BE category service flow. The MAC message can be an AAI DSA-REQ message (specified in IEEE 802.16m draft 9 (2010)). Either a base station or a mobile station can request a new service flow using the MAC message.
Abstract:
Technology for efficiently splitting a bearer at the packet data convergence protocol (PDCP) layer for uplink (UL) data transfers in wireless networks where dual connectivity is available is disclosed. A user equipment (UE) can send buffer status reports (BSRs) to a master evolved node B (MeNB) and a secondary evolved node B (SeNB). The BSRs can be formatted such that the amount of data in a radio link control (RLC) buffer at the UE and the amount of data in a packet data convergence protocol (PDCP) buffer at the UE are contained in different fields. The BSRs can also contain redundancy indicator (RI) values specifying a redundancy level between the PDCP buffer amounts included in the BSRS. The MeNB and the SeNB may then coordinate, via an X2 interface, an amount of uplink (UL) resources to allocate to the UE.
Abstract:
Coordination techniques for discontinuous reception (DRX) operations in dual-connectivity architectures are described. In one embodiment, for example, user equipment (UE) may comprise logic, at least a portion of which is in hardware, the logic to receive a radio resource control (RRC) configuration message during operation in a dually-connected UE state, determine whether UE assistance information reporting is enabled for the UE based on the RRC configuration message, and in response to a determination that UE assistance information reporting is enabled for the UE, send one or more UE assistance information messages to report a macro cell power preference and a small cell power preference. Other embodiments are described and claimed.