Abstract:
Described are variants (mutants) of a parent alpha-amylase having alpha-amylase activity and exhibiting altered properties relative to the parent alpha-amylase, and methods of use, thereof.
Abstract:
The present invention provides novel serine proteases, novel genetic material encoding these enzymes, and proteolytic proteins obtained from Micrococcineae spp., including but not limited to Cellulomonas spp. and variant proteins developed therefrom. In particular, the present invention provides protease compositions obtained from a Cellulomonas spp, DNA encoding the protease, vectors comprising the DNA encoding the protease, host cells transformed with the vector DNA, and an enzyme produced by the host cells. The present invention also provides cleaning compositions ( e.g. , detergent compositions), animal feed compositions, and textile and leather processing compositions comprising protease(s) obtained from a Micrococcineae spp., including but not limited to Cellulomonas spp. In alternative embodiments, the present invention provides mutant ( i.e. , variant) proteases derived from the wild-type proteases described herein. These mutant proteases also find use in numerous applications.
Abstract:
The present invention relates to the use of a parent AmyTS-23 alpha-amylase as well as variants, which variant has alpha-amylase activity and exhibits altered properties relative to the parent alpha-amylase in the production of food products, such as the use in a baking composition.
Abstract:
The present invention provides novel serine proteases, novel genetic material encoding these enzymes, and proteolytic proteins obtained from Micrococcineae spp., including but not limited to Cellulomonas spp. and variant proteins developed therefrom. In particular, the present invention provides protease compositions obtained from a Cellulomonas spp, DNA encoding the protease, vectors comprising the DNA encoding the protease, host cells transformed with the vector DNA, and an enzyme produced by the host cells. The present invention also provides cleaning compositions (e.g., detergent compositions), animal feed compositions, and textile and leather processing compositions comprising protease(s) obtained from a Micrococcineae spp., including but not limited to Cellulomonas spp. In alternative embodiments, the present invention provides mutant (i.e., variant) proteases derived from the wild-type proteases described herein. These mutant proteases also find use in numerous applications.
Abstract:
The present invention provides novel serine proteases, novel genetic material encoding these enzymes, and proteolytic proteins obtained from Micrococcineae spp., including but not limited to Cellulomonas spp. and variant proteins developed therefrom. In particular, the present invention provides protease compositions obtained from a Cellulomonas spp, DNA encoding the protease, vectors comprising the DNA encoding the protease, host cells transformed with the vector DNA, and an enzyme produced by the host cells. The present invention also provides cleaning compositions (e.g., detergent compositions), animal feed compositions, and textile and leather processing compositions comprising protease(s) obtained from a Micrococcineae spp., including but not limited to Cellulomonas spp. In alternative embodiments, the present invention provides mutant (i.e., variant) proteases derived from the wild-type proteases described herein. These mutant proteases also find use in numerous applications.
Abstract:
The present invention provides novel serine proteases, novel genetic material encoding these enzymes, and proteolytic proteins obtained from Micrococcineae spp., including but not limited to Cellulomonas spp. and variant proteins developed therefrom. In particular, the present invention provides protease compositions obtained from a Cellulomonas spp, DNA encoding the protease, vectors comprising the DNA encoding the protease, host cells transformed with the vector DNA, and an enzyme produced by the host cells. The present invention also provides cleaning compositions (e.g., detergent compositions), animal feed compositions, and textile and leather processing compositions comprising protease(s) obtained from a Micrococcineae spp., including but not limited to Cellulomonas spp. In alternative embodiments, the present invention provides mutant (i.e., variant) proteases derived from the wild-type proteases described herein. These mutant proteases also find use in numerous applications.
Abstract:
The present invention relates to the use of a parent AmyTS-23 alpha-amylase as well as variants, which variant has alpha-amylase activity and exhibits altered properties relative to the parent alpha-amylase in the production of food products, such as the use in a baking composition.
Abstract:
The present invention provides Streptomyces serine proteases. In some embodiments, the protease comprises an amino acid sequence that is at least about 80% identical to the wild type Streptomyces 1AG3 protease. The present invention also provides isolated nucleic acid sequences, recombinant nucleic acids, and host cells containing the recombinant nucleic acids are also provided. In addition, the present invention provides cleaning and other compositions comprising Streptomyces serine protease.
Abstract:
The present invention provides novel serine proteases, novel genetic material encoding these enzymes, and proteolytic proteins obtained from Micrococcineae spp., including but not limited to Cellulomonas spp. and variant proteins developed therefrom. In particular, the present invention provides protease compositions obtained from a Cellulomonas spp, DNA encoding the protease, vectors comprising the DNA encoding the protease, host cells transformed with the vector DNA, and an enzyme produced by the host cells. The present invention also provides cleaning compositions (e.g., detergent compositions), animal feed compositions, and textile and leather processing compositions comprising protease(s) obtained from a Micrococcineae spp., including but not limited to Cellulomonas spp. In alternative embodiments, the present invention provides mutant (i.e., variant) proteases derived from the wild-type proteases described herein. These mutant proteases also find use in numerous applications.