Abstract:
An approach combining immune-based therapies with focused radiation, including stereotactic radiation, to treat cancers is disclosed. The use of focused radiation primes the immune system in a similar manner to vaccines to augment immune-based therapies and can counteract the suppressive effects of a tumor. The combination of focused radiation and immune-based therapies, including administration of at least one immunotherapeutic agent, improves survival compared to each therapy alone and can, in some cases, lead to a durable cure. Accordingly, focused radiation can be an adjuvant for immune-based therapies for treating cancers.
Abstract:
A method and system for managing performance data of communication lines, such as digital subscriber lines, is disclosed. The method includes receiving from a remote used device an identifier for a particular communication line at a web server; initiating a real-time performance analysis of the line at a network end of the line; receiving real-time performance data and converting the real-time performance data to analyze data; receiving field performance data from the user device; and converting at least one of the field performance data and the real-time performance data from a web-based format to a mainframe format; and sending the converted data to a mainframe for storage corresponding to a file associated with the identifier.
Abstract:
A system including a panel (2212), a light emitting device (2202), and an optical component (2208) disposed in an optical path (2206, 2210) from the light emitting device (2202) to the edge (2211) of the panel (2212). The optical component (2208) includes an aperture, wherein a ratio of the area of the surface of the light emitting device (2202) to the area of the aperture is from about 0.5 to about 1.1.
Abstract:
Light-emitting devices (e.g., LEDs) and methods associated with such devices are provided. The devices may include a first pattern and a second pattern which are formed at one or more interfaces of the device (e.g., the emission surface). The patterns may be positioned such that light generated by the device passes through the interfaces of the patterns when being emitted. The patterns can be defined by a series of features (e.g., vias, posts) having certain characteristics (e.g., feature size, depth, periodicity, nearest neighbor distance, etc.) which may be controlled to influence properties of the light emitted from the device, including improving extraction and/or collimation of the emitted light.
Abstract:
The present invention relates to light-emitting diodes (LEDs), and related components, processes, systems, and methods. In certain embodiments, an LED that provides improved optical and thermal efficiency when used in optical systems with a non-rectangular input aperture (e.g., a circular aperture) is described. In some embodiments, the emission surface of the LED and/or an emitter output aperture can be shaped (e.g., in a non-rectangular shape) such that enhanced optical and thermal efficiencies are achieved. In addition, in some embodiments, chip designs and processes that may be employed in order to produce such devices are described.
Abstract:
Light-emitting devices can include a package that supports one or more light-emitting die (e.g., light-emitting diode die, laser diode die) and which can ensure mechanically stability, can facilitate electrical and/or thermal coupling with light-emitting die, and can manipulate the manner by which light generated by the die is emitted out of the light-emitting device. The package can also facilitate the integration of the light-emitting devices in various components and systems. For example, suitable packages may facilitate the use of light-emitting devices in components and systems such as light-emitting panel assemblies, LCD back lighting, general lighting, decorative or display lighting, automotive lighting, and other types of lighting components and systems.
Abstract:
Illumination assemblies, components, and related methods are described. An illumination assembly can include at least one solid state light-emitting device, and at least one light guide including a light homogenization region configured to receive light emitted by the solid state light-emitting device and including a light output boundary. The light homogenization region substantially uniformly distributes light outputted over the light output boundary. A wavelength converting material can be disposed within at least a portion of the light homogenization region. In some assemblies, a light extraction region can be configured to receive light from the light output boundary of the light homogenization region, and can have a length along which received light propagates and an emission surface through which light is emitted. The light extraction region can include a wavelength converting material disposed within at least a portion of the light extraction region.