Abstract:
The invention provides peptides that bind Tissue Factor Pathway Inhibitor (TFPI), including TFPI-inhibitory peptides, and compositions thereof. The peptides may be used to inhibit a TFPI, enhance thrombin formation in a clotting factor-deficient subject, increase blood clot formation in a subject, treat a blood coagulation disorder in a subject, purify TFPI, and identify a TFPI-binding compound.
Abstract:
The present invention is related to a compound, preferably a C5a receptor antagonist, having the following structure: (I), whereby X1 is a radical having a mass of about 1-300, whereby X1 is preferably selected from the group comprising R5-, R5-CO-, R5-N(R6)-CO-, R5-O-CO-, R5-SO 2 -, R5-N(R6)-SO 2 -, R5-N(R6)-, R5-N(R6)-CS-, R5-N(R6)-C(NH)-, R5-CS-, R5-P(O)OH-5 R5-B(OH)-, and R5 -CH=N-O-CH 2 -CO-, whereby R5 and R6 are individually and independently selected from the group comprising H, F, hydroxy, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclyl, substituted heterocyclyl, arylalkyl, substituted arylalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, acyl, substituted acyl, alkoxy, alkoxyalkyl, substituted alkoxyalkyl, aryloxyalkyl and substituted aryloxyalkyl, X2 is a radical that mimics the biological binding characteristics of a phenylalanine unit, X3 and X4 are individually and independently a spacer, whereby the spacer is preferably selected from the group comprising amino acids, amino acid analogs and amino acid derivates, X5 is a radical that mimics the biological binding characteristics of a cyclohexylalanine or homoleucine unit, X6 is a radical that mimics the biological binding characteristics of a tryptophane unit, X7 is a radical that mimics the biological binding characteristics of a norleucine or phenylalanine unit, a chemical bond X3 and X7 is formed, and the connecting lines - in formula (I) indicate chemical bonds, whereby the chemical bond is individually and independently selected from the group comprising covalent bonds, ionic bonds and coordinative bonds, whereby preferably the bond is a chemical bond and more preferably the chemical bond is a bond selected from the group comprising amide bonds, disulfide bonds, ether bonds, thioether bonds, oxime bonds and aminotriazine bonds, whereby the compound is in particular useful for the manufacture of a medicament for the treatment of autoimmune diseases.
Abstract:
The invention relates to a novel biotechnical continuous method for producing linear poly(1,4-alpha-glucan), whereby the poly(1,4-glucan) is produced as a solid in a modified biotransformation by using immobilized fusion proteins which have an amylosucrase activity.
Abstract:
The invention provides peptides that bind Tissue Factor Pathway Inhibitor (TFPI), including TFPI-inhibitory peptides, and compositions thereof. The peptides may be used to inhibit a TFPI, enhance thrombin formation in a clotting factor-deficient subject, increase blood clot formation in a subject, treat a blood coagulation disorder in a subject, purify TFPI, and identify a TFPI-binding compound.
Abstract:
The invention provides peptides that bind Tissue Factor Pathway Inhibitor (TFPI), including TFPI-inhibitory peptides, and compositions thereof. The peptides may be used to inhibit a TFPI, enhance thrombin formation in a clotting factor-deficient subject, increase blood clot formation in a subject, treat a blood coagulation disorder in a subject, purify TFPI, and identify a TFPI-binding compound.
Abstract:
The invention provides peptides that bind Tissue Factor Pathway Inhibitor (TFPI), including TFPI-inhibitory peptides, and compositions thereof. The peptides may be used to inhibit a TFPI, enhance thrombin formation in a clotting factor-deficient subject, increase blood clot formation in a subject, and/or treat a blood coagulation disorder in a subject.
Abstract:
The invention relates to a method for simultaneously detecting mutations in different nucleotide sequences and for determining the transcription rate of mutated and non-mutated nucleotide sequences. The inventive method comprises the following steps: hybridizing single-stranded sample nucleotide sequences to single-stranded reference nucleotide sequences, fixating, before or during hybridization, single-stranded reference nucleotide sequences or single-stranded sample nucleotide sequences, or fixating, after or during hybridization, heteroduplices from reference and sample nucleotide sequences on an electronically addressable surface, incubating them with a substrate that recognizes heteroduplex mismatches, and detecting the substrate bonds.
Abstract:
The invention provides peptides that bind Tissue Factor Pathway Inhibitor (TFPI), including TFPI-inhibitory peptides, and compositions thereof. The peptides may be used to inhibit a TFPI, enhance thrombin formation in a clotting factor-deficient subject, increase blood clot formation in a subject, and/or treat a blood coagulation disorder in a subject.