Abstract:
One aspect of the invention provides methods for treating cancers which are resistant to treatment with a protein tyrosine kinase inhibitor by co-treatment with the protein tyrosine kinase inhibitor and one or more antisense oligomers that reduce the expression of HER3 and/or HER2 and/or EGFR. Another aspect of the invention provides methods for treating cancers by co-treatment with an inhibitor of HER2 and one or more antisense oligomers that reduce the expression of HER3.
Abstract:
Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
Abstract:
Humanized antibodies are provided that specifically bind HLA-DR. The antibodies recognize the epitope recognized by the murine monoclonal antibody L243. Processes for preparing such antibodies, pharmaceutical compositions containing such antibodies, and clinical therapuetic and diagnostic, as well as research-related uses for such antibodies, are provided.
Abstract:
The present invention provides humanized, chimeric and human anti-CD19 antibodies, anti-CD19 antibody fusion proteins, and fragments thereof that bind to a human B cell marker. Such antibodies, fusion proteins and fragments thereof are useful for the treatment and diagnosis of various B-cell disorders, including B-cell malignancies and autoimmune diseases.
Abstract:
The present invention provides humanized, chimeric and human anti-alpha-fetoprotein antibodies, fusion proteins, and fragments thereof. The antibodies, fusion proteins, and fragments thereof, as well as combinations with other suitable antibodies, are useful for the treatment and diagnosis of hepatocellular carcinoma, hepatoblastoma, germ cell tumors carcinoma and other AFP-producing tumors.
Abstract:
Disclosed herein are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. By transfecting cells in culture with an apoptosis-inhibiting gene or vector, cells in culture can survive longer, resulting in extension of the state and yield of protein biosynthesis. Expression of the apoptosis-inhibitor within the cells, because it does not kill the cells, allows the cells, or an increased fraction thereof, to be maintained in culture for longer periods. This invention then allows for controlled, enhanced protein production of cell lines for commercial and research uses, particularly the enhanced production of growth factors, interferons, interleukins, hormones, enzymes, and monoclonal antibodies, and the like. The method preferentially involves eukaryotic cells in culture, and more advantageously mammalian cells in culture.
Abstract:
Disclosed herein are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. By transfecting cells in culture with an apoptosis-inhibiting gene or vector, cells in culture can survive longer, resulting in extension of the state and yield of protein biosynthesis. Expression of the apoptosis-inhibitor within the cells, because it does not kill the cells, allows the cells, or an increased fraction thereof, to be maintained in culture for longer periods. This invention then allows for controlled, enhanced protein production of cell lines for commercial and research uses, particularly the enhanced production of growth factors, interferons, interleukins, hormones, enzymes, and monoclonal antibodies, and the like. The method preferentially involves eukaryotic cells in culture, and more advantageously mammalian cells in culture.
Abstract:
Provided herein are targetable constructs that are multivalent carriers of bi-specific antibodies, i.e., each molecule of a targetable construct can serve as a carrier of two or more bi-specific antibodies. Also provided are targetable complexes formed by the association of a targetable construct with two or more bi-specific antibodies. The targetable constructs and targetable complexes of the invention are incorporated into biosensors, kits and pharmaceutical compositions, and are used in a variety of therapeutic and other methods.
Abstract:
This invention relates to monovalent and multivalent, monospecific antibodies and to multivalent, multispecific antibodies. One embodiment of these antibodies has one or more identical binding sites where each binding site binds with a target antigen or an epitope on a target antigen. Another embodiment of these antibodies has two or more binding sites where these binding sites have affinity towards different epitopes on a target antigen or different target antigens, or have affinity towards a target antigen and a hapten. The present invention further relates to recombinant vectors useful for the expression of these functional antibodies in a host. More specifically, the present invention relates to the tumor-associated antibody designated PAM4. The invention further relates to humanized and human PAM4 antibodies, and the use of such antibodies in diagnosis and therapy.
Abstract:
The present invention relates to a bi-specific antibody or antibody fragment having at least one arm that is reactive against a targeted tissue and at least one other arm that is reactive against a linker moiety. The linker moiety encompasses a hapten to which antibodies have been prepared. The antigenic linker is conjugated to one or more therapeutic or diagnostic agents or enzymes. The invention provides constructs and methods for producing the bi-specific antibodies or antibody fragments, as well as methods for using them.