Abstract:
Device design methods for use with non- volatile nanotube switches are disclosed. In a first aspect of the present disclosure, a plurality of nonconductive nanoparticles is adhered to a nanotube element such as to provide an isolation barrier from a control electrode and further provide a switching gap above that element. In a second aspect of the present disclosure, conductive nanoparticles are dispersed and adhered to either a control electrode or to a nanotube element positioned over said electrode element such that the interface area (that is, the area of the nanotube element which comes into contact with the control electrode) is minimized. In a third aspect of the present disclosure, a monolayer network of nonconductive nanotubes is used to provide an isolation barrier between a control electrode and a nanotube element. Voids or spaces in said monolayer network further provides switching gaps.
Abstract:
Vacuum microelectronic devices with carbon nanotube films, layers, ribbons and fabrics are provided. The present invention discloses microelectronic vacuum devices including triode structures that include three-terminals (an emitter, a grid and an anode), and also higher-order devices such as tetrodes and pentodes, all of which use carbon nanotubes to form various components of the devices. In certain embodiments, patterned portions of nanotube fabric may be used as grid/gate components, conductive traces, etc. Nanotube fabrics may be suspended or conformally disposed. In certain embodiments, methods for stiffening a nanotube fabric layer are used. Various methods for applying, selectively removing (e.g. etching), suspending, and stiffening vertically- and horizontally- disposed nanotube fabrics are disclosed, as are CMOS -compatible fabrication methods. In certain embodiments, nanotube fabric triodes provide high-speed, small-scale, low -power devices that can be employed in radiation-intensive applications.
Abstract:
A symmetric touch screen switch system in which both the touch side and panelside transparent electrodes are comprised of carbon nanotube thin films is provided. The fabrication of various carbon nanotube enabled components and the assembly of a working prototype touch switch using those components is described. Various embodiments provide for a larger range of resistance and optical transparency for the both the electrodes, higher flexibility due to the excellent mechanical properties of carbon nanotubes. Certain embodiments of the symmetric, CNT-CNT touch switch achieve excellent optical transparency (
Abstract:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1 x 10 18 atoms/cm 3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.
Abstract translation:描述了一些可旋涂的液体和应用技术,其可用于形成纳米管膜或具有受控特性的织物。 用于形成纳米管膜的可旋涂液体包括含有受控浓度的纯化纳米管的液体介质,其中所述受控浓度足以形成预定浓度和均匀性的纳米管织物或膜,并且其中所述可旋涂液体包含 小于1×10 18原子/ cm 3的金属杂质。 可旋涂的液体基本上不含直径大于约500nm的颗粒杂质。
Abstract:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid for formation of a nanotube film includes a liquid medium containing a controlled concentration of purified nanotubes, wherein the controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity, and wherein the spin-coatable liquid comprises less than 1 x 10 18 atoms/cm 3 of metal impurities. The spin-coatable liquid is substantially free of particle impurities having a diameter of greater than about 500 nm.
Abstract translation:描述了一些可旋涂的液体和应用技术,其可以用于形成纳米管膜或受控特性的织物。 用于形成纳米管膜的可旋涂液体包括含有受控浓度的纯化纳米管的液体介质,其中所述受控浓度足以形成预定浓度和均匀性的纳米管织物或膜,并且其中所述可旋涂液体包含 小于1×10 18原子/ cm 3的金属杂质。 可旋涂的液体基本上不含直径大于约500nm的颗粒杂质。
Abstract:
Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A method of making an applicator liquid containing nanotubes for use in an electronics fabrication process includes characterizing an electronic fabrication process according to fabrication compatible solvents and allowable levels of metallic and particle impurities; providing nanotubes that satisfy the allowable impurities criteria for the electronics fabrication process; providing a solvent that meets the fabrication compatible solvents and allowable impurities criteria for the electronic fabrication process; and dispersing the nanotubes into the solvent at a concentration of at least one milligram of nanotubes per liter solvent to form an applicator liquid.
Abstract:
A discrete electro-mechanical device includes a structure (182) having an electrically-conductive trace. A defined patch of nanotube fabric (154) is disposed in spaced relation to the trace; and the defined patch of nanotube fabric (154) is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric (154). Under certain embodiments, the structure (182) includes a defined gap (180) into which the electrically conductive trace is disposed.
Abstract:
Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under certain embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning. Under certain embodiments, a large-scale array includes multiple sensors.
Abstract:
Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under certain embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning. Under certain embodiments, a large-scale array includes multiple sensors.
Abstract:
A non-volatile nanotube switch and memory arrays constructed from these switches are disclosed. A non-volatile nanotube switch includes a conductive terminal and a nanoscopic element stack having a plurality of nanoscopic elements arranged in direct electrical contact, a first comprising a nanotube fabric and a second comprising a carbon material, a portion of the nanoscopic element stack in electrical contact with the conductive terminal. Control circuitry is provided in electrical communication with and for applying electrical stimulus to the conductive terminal and to at least a portion of the nanoscopic element stack. At least one of the nanoscopic elements is capable of switching among a plurality of electronic states in response to a corresponding electrical stimuli applied by the control circuitry to the conductive terminal and the portion of the nanoscopic element stack. For each electronic state, the nanoscopic element stack provides an electrical pathway of corresponding resistance.