Abstract:
A micro-scale interconnect device with internal heat spreader and method for fabricating same. The device includes first and second arrays of generally coplanar electrical communication lines. The first array is disposed generally along a first plane, and the second array is disposed generally along a second plane spaced from the first plane. The arrays are electrically isolated from each other. Embedded within the interconnect device is a heat spreader element. The heat spreader element comprises a dielectric material disposed in thermal contact with at least one of the arrays and a layer of thermally conductive material embedded in the dielectric material. The device is fabricated by forming layers of electrically conductive, dielectric, and thermally conductive materials on a substrate. The layers are arranged to enable heat energy given off by current-carrying communciation lines to be transferred away from the communciation lines.
Abstract:
A micro-scale interconnect device with internal heat spreader and method for fabricating same. The device includes first and second arrays of generally coplanar electrical communication lines. The first array is disposed generally along a first plane, and the second array is disposed generally along a second plane spaced from the first plane. The arrays are electrically isolated from each other. Embedded within the interconnect device is a heat spreader element. The heat spreader element comprises a dielectric material disposed in thermal contact with at least one of the arrays and a layer of thermally conductive material embedded in the dielectric material. The device is fabricated by forming layers of electrically conductive, dielectric, and thermally conductive materials on a substrate. The layers are arranged to enable heat energy given off by current-carrying communciation lines to be transferred away from the communciation lines.
Abstract:
A movable, trilayered microcomponent (108) suspended over a substrate (102) is provided and includes a first electrically conductive layer (116) patterned to define a movable electrode (114). The first metal layer (116) is separated from the substrate (102) by a gap. The microcomponent (108) further includes a dielectric layer formed (112) on the first metal layer (116) and having an end fixed with respect to the substrate (102). Furthermore, the microcomponent (102) includes a second electrically conductive layer (120) formed on the dielectric layer (112) and patterned to define an electrode interconnect (124) for electrically communicating with the movable electrode (114).
Abstract:
MEMS device (100) having an electrothermal actuator (126) and release and a method for fabrication. According to one embodiment, a microscale switch (100) is provided and can include a substrate (102) and a stationary electrode (106) and stationary contact (104) formed on the substrate (102). The switch (100) can further include a movable microcomponent (108) suspended above the substrate (102). The microcomponent (108) can include a structural layer (112) including at least one end fixed with respect to the substrate (102). The microcomponent (108) can further include a movable electrode (118) spaced from the stationary electrode (106). The microcomponent (108) can include an electrothermal component (126) attached to the structural layer (112) and operable to produce heating for generating force for moving the structural layer (112).