Abstract:
Compounds of the formula (I), wherein X and R1 to R5 are as defined in the description, are useful for treating disorders mediated full or in part by mGluR5.
Abstract:
Isolated nucleic acid encoding low voltage activated calcium channel subunits, including subunits encoded by nucleic acid that arises as splice variants of primary transcripts, is provided. Cells and vectors containing the nucleic acid and methods for identifying compounds that modulate the activity of calcium channels that contain these subunits are also provided.
Abstract:
In accordance with the present invention, there are provided nucleic acids encoding human metabotropic glutamate receptor subtype mGluR6, and the proteins encoded thereby. In addition to being useful for the production of metabotropic glutamate receptor subtype mGluR6, nucleic acids of the invention are also useful as probes, thus enabling those skilled in the art, without undue experimentation, to identify and isolate related human receptor subunits. In addition to disclosing a novel metabotropic glutamate receptor subtype, mGluR6, the present invention also comprises methods for using the invention receptor subtype to identify and characterize compounds which affect the function of such receptor subtype, e.g., agonists, antagonists, and modulators of glutamate receptor function.
Abstract:
In accordance with the present invention, a novel class of substituted aryl compounds (containing ether, ester, amide, ketone or thioether substitution) that promote the release of ligands involved in neurotransmission have been discovered. In a particular aspect, compounds of the present invention are capable of modulating acetylcholine receptors. The compounds of the present invention are capable of displacing one or more acetylcholine receptor ligands, e.g., H-nicotine, from mammalian neuronal membrane binding sites. Invention compounds may act as agonists, partial agonists, antagonists or allosteric modulators of acetylcholine receptors. Therapeutic indications for compounds with activity at acetylcholine receptors include diseases of the central nervous system such as Alzheimer's disease and other diseases involving memory loss and/or dementia (including AIDS dementia); cognitive dysfunction (including disorders of attention, focus and concentration), disorders of extrapyramidal motor function such as Parkinson's disease, progressive supramuscular palsy, Huntington's disease, Gilles de la Tourette syndrome and tardive dyskinesia; mood and emotional disorders such as depression, anxiety and psychosis; substance abuse including withdrawal symptoms and substitution therapy; neurocrine disorders and dysregulation of food intake, including bulimia and anorexia; disorders or nociception and control of pain; autonomic disorders including dysfunction of gastrointestinal motility and function such as inflammatory bowel disease, irritable bowel syndrome, diarrhea, constipation, gastric acid secretion and ulcers; pheochromocytoma, cardiovascular dysfunction including hypertension and cardiac arrhythmias, as well as co-medication uses in surgical applications.
Abstract:
Nucleic acid molecules encoding human neuronal nicotinic acetylcholine receptor alpha and beta subunits, mammalian and amphibian cells containing the nucleic acid molecules, and methods for producing alpha and beta subunits are provided. In particular, nucleic acid molecules encoding alpha 6 subunits and molecules encoding beta 3 subunits of human neuronal nicotinic acetylcholine receptors are provided. In addition, combinations of a plurality of subunits, such as one or more of alpha 1, alpha 2, alpha 3, alpha 4, alpha 5, alpha 6 and/or alpha 7 subunits in combination with one or more of beta 3 subunits or such as one or more of beta 2, beta 3 and/or beta 4 subunits in combination with an alpha 6 subunit are provided.
Abstract:
In accordance with the present invention, there are provided compounds having the structure (I), wherein: A, B, N?α, Rα, Z, R2, R4, R5 and R6¿ are defined as in the description. The compounds of the invention displace acetylcholine receptor ligands from their binding sites. Invention compounds may act as agonists, partial agonists, antagonists or allosteric modulators of acetylcholine receptors, and are useful for a variety of therapeutic applications, such as the treatment of Alzheimer's disease and other disorders involving memory loss and/or dementia (including AIDS dementia); disorders of attention and focus (such as attention deficit disorders); disorders of extrapyramidal motor function such as Parkinson's disease, Huntington's disease, Gilles de la Tourette syndrome and tardive dyskinesia; mood and emotional disorders such as depression, panic, anxiety and psychosis; substance abuse including withdrawal syndromes and substitution therapy; neuroendocrine disorders and dysregulation of food intake, including bulimia and anorexia; disorders of nociception and control of pain; autonomic disorders including dysfunction of gastrointestinal motility and function such as inflammatory bowel disease, irritable bowel syndrome, diarrhea, constipation, gastric acid secretion and ulcers; pheochromocytoma; cardiovascular dysfunction including hypertension and cardia arrhythmias, comedication in surgical procedures, and the like.
Abstract:
In accordance with the present invention, there are provided compounds having the structure (I), wherein: A, B, N , R , Z, R , R , R and R are defined as in the description. The compounds of the invention displace acetylcholine receptor ligands from their binding sites. Invention compounds may act as agonists, partial agonists, antagonists or allosteric modulators of acetylcholine receptors, and are useful for a variety of therapeutic applications, such as the treatment of Alzheimer's disease and other disorders involving memory loss and/or dementia (including AIDS dementia); disorders of attention and focus (such as attention deficit disorders); disorders of extrapyramidal motor function such as Parkinson's disease, Huntington's disease, Gilles de la Tourette syndrome and tardive dyskinesia; mood and emotional disorders such as depression, panic, anxiety and psychosis; substance abuse including withdrawal syndromes and substitution therapy; neuroendocrine disorders and dysregulation of food intake, including bulimia and anorexia; disorders of nociception and control of pain; autonomic disorders including dysfunction of gastrointestinal motility and function such as inflammatory bowel disease, irritable bowels syndrome, diarrhea, constipation, gastric acid secretion and ulcers; pheochromocytoma; cardiovascular dysfunction including hypertension and cardia arrhythmias, comedication in surgical procedures, and the like.