Abstract:
An antifuse circuit (10) provides on a per bit basis a signal that indicates whether an MTJ (magnetic tunnel junction) antifuse (18) has been previously programmed to a low resistance state in response to a program voltage. A sense amplifier (12) provides the resistance state signal. A plurality of reference magnetic tunnel junctions (16) are coupled in parallel and to the sense amplifier (12), each (50, 52, 54) having a resistance within a range to provide a collective resistance that can be determined by the sense amplifier (12) to differ from each resistance state of the MTJ antifuse (18). A write circuit selectively provides a current sufficient to create the program voltage when the write circuit (20) is enabled to program the antifuse magnetic tunnel junction (18). Upon detecting a change in resistance in the MTJ antifuse (18), the write circuit (20) reduces current supplied to the antifuse (18). Multiple antifuses may be programmed concurrently. Gate oxide thicknesses of transistors are adjusted for optimal performance.
Abstract:
A random access memory architecture includes a first series connected pair of memory elements (202, 206, 302, 306, 402, 404) having a first resistance and a second series connected pair of memory elements (204, 208, 304, 308, 406, 408) having a second resistance coupled in parallel with the first series connected pair of memory elements, wherein a current flows in the first direction through both of the first and second series connected pair of memory elements. A sense amplifier (14) is coupled to an array (16) of MRAM cells (77), each including a memory element, and includes a voltage bias portion (12), the voltage bias portion including the first and second series connected pair of memory elements. The memory elements may be, for example, magnetic tunnel junctions.
Abstract:
An antifuse circuit (10) provides on a per bit basis a signal that indicates whether an MTJ (magnetic tunnel junction) antifuse (18) has been previously programmed to a low resistance state in response to a program voltage. A sense amplifier (12) provides the resistance state signal. A plurality of reference magnetic tunnel junctions (16) are coupled in parallel and to the sense amplifier (12), each (50, 52, 54) having a resistance within a range to provide a collective resistance that can be determined by the sense amplifier (12) to differ from each resistance state of the MTJ antifuse (18). A write circuit selectively provides a current sufficient to create the program voltage when the write circuit (20) is enabled to program the antifuse magnetic tunnel junction (18). Upon detecting a change in resistance in the MTJ antifuse (18), the write circuit (20) reduces current supplied to the antifuse (18). Multiple antifuses may be programmed concurrently. Gate oxide thicknesses of transistors are adjusted for optimal performance.
Abstract:
A write driver (36) uses a reference current (102) that is reflected to a driver circuit (114) by a voltage. The driver circuit (114) is sized in relation to the device (104) that provides the voltage so that the current through the driver (114) is a predetermined multiple of the reference current (102). This voltage is coupled to the driver circuit (114) through a switch (110). The switch (110) is controlled so that the driver circuit (114) only receives the voltage when the write line (52) is to have write current through it as determined by a decoder (22) responsive to an address. The driver (114) is affirmatively disabled when the write line (52) is intended to not have current passing through it. As an enhancement to overcome ground bounce due to high currents, the input to the driver can be capacitively coupled (120) to the ground terminal that experiences such bounce. Additional enhancements provide benefits in amplitude and edge rate control.
Abstract:
A technique for detecting tampering attempts directed at a memory device includes setting each of a plurality of detection memory cells to an initial predetermined state, where corresponding portions of the plurality of detection memory cells are included in each of the arrays of data storage memory cells on the memory device. A plurality of corresponding reference bits on the memory device permanently store information representative of the initial predetermined state of each of the detection memory elements.
Abstract:
A patterned polysilicon gate (18) is over a metal layer (16) that is over a gate dielectric layer (14), which in turn is over a semiconductor substrate (12). A thin layer (20) of material is conformally deposited over the polysilicon gate (18) and the exposed metal layer (16) and then etched back to form a sidewall spacer (22) on the polysilicon gate (18) and to re-expose the previously exposed portion of the metal layer (16). The re-exposed metal layer (16) is etched using an etchant that is selective to the gate dielectric material and the sidewall spacer (22). Even though this etch is substantially anisotropic, it has an isotropic component that would etch the sidewall of the polysilicon gate (18) but for the protection provided by the sidewall spacer (22). After the re-exposed metal (16) has been removed, a transistor is formed in which the metal layer (14,24) sets the work function of the gate of the transistor.
Abstract:
A controller (105) for a toggle memory that performs burst writes by reading a group of bits in the toggle memory (103) and comparing each received data word of the burst with a portion of the group to determine which cells to toggle to enter the data of the burst write in the toggle memory. In one example the toggle memory includes magnetoresistive random access memory (MRAM) with cells using multiple free magnetic layers that toggle between states when subjected to a sequence of magnetic pulses along two directions. Because one read is performed for a group of data of the burst, the time needed to perform the burst write is reduced.
Abstract:
A patterned polysilicon gate (18) is over a metal layer (16) that is over a gate dielectric layer (14), which in turn is over a semiconductor substrate (12). A thin layer (20) of material is conformally deposited over the polysilicon gate (18) and the exposed metal layer (16) and then etched back to form a sidewall spacer (22) on the polysilicon gate (18) and to re-expose the previously exposed portion of the metal layer (16). The re-exposed metal layer (16) is etched using an etchant that is selective to the gate dielectric material and the sidewall spacer (22). Even though this etch is substantially anisotropic, it has an isotropic component that would etch the sidewall of the polysilicon gate (18) but for the protection provided by the sidewall spacer (22). After the re-exposed metal (16) has been removed, a transistor is formed in which the metal layer (14,24) sets the work function of the gate of the transistor.
Abstract:
A controller (105) for a toggle memory that performs burst writes by reading a group of bits in the toggle memory (103) and comparing each received data word of the burst with a portion of the group to determine which cells to toggle to enter the data of the burst write in the toggle memory. In one example the toggle memory includes magnetoresistive random access memory (MRAM) with cells using multiple free magnetic layers that toggle between states when subjected to a sequence of magnetic pulses along two directions. Because one read is performed for a group of data of the burst, the time needed to perform the burst write is reduced.