Abstract:
A drug delivery balloon is provided comprising a balloon having a surface, and a coating disposed on at least a portion of the balloon surface, the coating including an cytostatic therapeutic agent, an excipient, and a plasticizer. In accordance with the present subject matter, at least 30% of the coating transfers from the balloon surface within two minutes after inflation of the balloon. Alternatively, at least 30% of the coating transfers from the balloon surface within one minute after inflation. The coating results in an effective pharmacokinetic profile of an cytostatic therapeutic agent in a vasculature or target tissue.
Abstract:
Disclosed is an interventional device for delivery of therapeutic agents from an angioplasty balloon and from a prosthesis such as an intraluminal stent. The invention also relates to the method of loading the beneficial agents onto the balloon and the device, as well as the method of delivery of the agents from separate surfaces. The invention also relates to an interventional device having a prosthesis surface that is loaded with a first beneficial agent, and a balloon surface loaded with a second beneficial agent. The invention also relates to a method of loading multiple beneficial agents onto the prosthesis surfaces and the balloon surfaces, and to a method of manufacturing an interventional device for the delivery of a first beneficial agent and a second beneficial agent from separate surfaces.
Abstract:
An apparatus and system for delivering a lipophilic agent associated with a medical device including: a medical device, a first lipophilic agent capable of penetrating a body lumen, wherein the transfer coefficients of the first lipophilic agent is by an amount that is statistically significant of at least approximately 5,000, wherein the first lipophilic agent is associated with the medical device, wherein the first lipophilic agent/medical device is placed adjacent to said body lumen, and wherein a therapeutically effective amount of the first lipophilic agent is delivered to a desired area within a subject. Furthermore, the invention relates to a method for improving patency in a subject involving placement of a medical device in a body lumen for treating and/or preventing adjacent diseases or maintaining patency of the body lumen.
Abstract:
Systems and compositions comprising paclitaxel and a second drug, such as rapamycin, analogs, derivatives, salts and esters thereof are disclosed, as well as methods of delivery wherein the drugs have effects that complement each other. Medical devices comprising supporting structures capable of including or supporting a pharmaceutically acceptable carrier or excipient, which carrier or excipient can contain one or more therapeutic agents or substances, with the carrier preferably including a coating on the surface thereof, and the coating including the therapeutic substances, such as, for example, drugs. Supporting structures for the medical devices that are suitable for use in this invention include coronary stents, peripheral stents, catheters, arterio-venous grafts, by-pass grafts, and drug delivery balloons used in the vasculature. These compositions and systems can be used in combination with other drugs, including anti-proliferative agents, anti-platelet agents, anti-inflammatory agents, anti-thrombotic agents, cytotoxic drugs, agents that inhibit cytokine or chemokine binding, cell de-differentiation inhibitors, anti-lipaedemic agents, matrix metalloproteinase inhibitors, cytostatic drugs, or combinations of these and other drugs.
Abstract:
Systems and compositions comprising paclitaxel and a second drug, such as rapamycin, analogs, derivatives, salts and esters thereof are disclosed, as well as methods of delivery wherein the drugs have effects that complement each other. Medical devices comprising supporting structures capable of including or supporting a pharmaceutically acceptable carrier or excipient, which carrier or excipient can contain one or more therapeutic agents or substances, with the carrier preferably including a coating on the surface thereof, and the coating including the therapeutic substances, such as, for example, drugs. Supporting structures for the medical devices that are suitable for use in this invention include coronary stents, peripheral stents, catheters, arterio-venous grafts, by-pass grafts, and drug delivery balloons used in the vasculature. These compositions and systems can be used in combination with other drugs, including anti-proliferative agents, anti-platelet agents, anti-inflammatory agents, anti-thrombotic agents, cytotoxic drugs, agents that inhibit cytokine or chemokine binding, cell de-differentiation inhibitors, anti-lipaedemic agents, matrix metalloproteinase inhibitors, cytostatic drugs, or combinations of these and other drugs.
Abstract:
A method for improving the retention between the surfaces of medical devices. The method includes coating a surface of one medical device such as a stent with a coating that includes a functional group and coating a surface of another medical device such as a balloon with a coating that includes an identical or different functional group. The method further includes interacting the coated surfaces to produce a plurality of bonds between the surfaces, thereby improving retention.
Abstract:
Systems and compositions comprising zotarolimus that are safer, more effective and produce less inflammation than rapamycin and paclitaxel systems are disclosed. Medical devices comprising supporting structures capable of containing or supporting a pharmaceutically acceptable carrier or excipient, which carrier or excipient can contain one or more therapeutic agents or substances, with the carrier including a coating on the surface thereof, and the coating having the therapeutic compounds, including, for example, drugs. Supporting structures for the medical devices that are suitable for use in this invention include coronary stents, peripheral stents, catheters, arterio-venous grafts, by-pass grafts, and drug delivery balloons used in the vasculature. These compositions and systems can be used in combination with other drugs, including anti-proliferative agents, anti-platelet agents, anti-inflammatory agents, anti-thrombotic agents, cytotoxic drugs, agents that inhibit cytokine or chemokine binding, cell de-differentiation inhibitors, anti-lipaedemic agents, matrix metalloproteinase inhibitors, cytostatic drugs, or combinations of these and other drugs.
Abstract:
An apparatus and system for delivering a lipophilic agent associated with a medical device including: a medical device, a first lipophilic agent capable of penetrating a body lumen, wherein the transfer coefficients of the first lipophilic agent is by an amount that is statistically significant of at least approximately 5,000, wherein the first lipophilic agent is associated with the medical device, wherein the first lipophilic agent/medical device is placed adjacent to said body lumen, and wherein a therapeutically effective amount of the first lipophilic agent is delivered to a desired area within a subject. Furthermore, the invention relates to a method for improving patency in a subject involving placement of a medical device in a body lumen for treating and/or preventing adjacent diseases or maintaining patency of the body lumen.
Abstract:
Compounds having structure (I) wherein m is 1, 2, 3 or 4; Z-(-COO-)-m is the residue of a polyiodinated aromatic mono- or polyacid; R is H, alkyl, fluoroalkyl, cycloalkyl, aryl, aralkyl, alkoxyalkyl or acetamidoalkyl; n is an integer from 0 to 20; R is cycloalkyl or aryl; and R , R and R are independently H, alkyl, fluoroalkyl, cycloalkyl, aryl, aralkyl, halogen, hydroxy, acylamino, acetamidoalkyl, cyano, sulfonyl, carboxamido or sulfonamido are useful as x-ray contrast agents in medical diagnostic x-ray imaging compositions and methods.
Abstract translation:具有结构(I)的化合物,其中m为1,2,3或4; Z - ( - COO - ) - m是多元芳族单或多酸的残基; R 1是H,烷基,氟代烷基,环烷基,芳基,芳烷基,烷氧基烷基或乙酰氨基烷基; n为0〜20的整数, R 2是环烷基或芳基; R 3和R 5独立地为H,烷基,氟烷基,环烷基,芳基,芳烷基,卤素,羟基,酰氨基,乙酰氨基烷基,氰基,磺酰基,甲酰氨基或亚磺酰氨基,可用作x-射线 医疗诊断x射线成像组合物和方法中的造影剂。
Abstract:
The present invention encompasses a coating on the surface of a substrate and the coated substrates. The coating includes a polymer, an olimus drug (sirolimus, everolimus, zotarolimus, etc.), and a dexamethasone derivative. The polymer may be a hydrophobic polymer, preferably a fluoropolymer, and more preferably a fluoropolymer with at least 25% vinylidene fluoride by weight.