Abstract:
A diagnostic device is provided that includes a plurality of retainment regions interconnected through at least one fluid processing passageway or separated by at least one barrier. A fluid flow modulator can be provided in the fluid processing passageway if a fluid processing passageway is provided. The barrier and/or fluid flow modulator can comprise a polysaccharide, a derivative of a polysaccharide, or a combination thereof. For example, the barrier can comprise a chitosan material.
Abstract:
Methods and kits for preparing nucleic acid fragments from a sample of purified nucleic acid are provided. Alternatively, chromatin or other long polymers can be sheared with similar methods and kits.
Abstract:
A fluid processing device, method and system are provided. The fluid processing device (20) can comprise: a substrate (22); a plurality of reaction regions (50) disposed in or on the substrate; at least one channel (24) interconnecting the plurality of reaction regions, the at least one channel having a cross-sectional area that includes a maximum dimension; and a plurality of reagent-releasing beads (48). Each reagent-releasing bead can be positioned in a respective one of the reaction regions. Each bead can comprise one or more reaction components for an assay. Each of the reagent-releasing beads can have a minimum dimension that is greater than the maximum dimension of the channel cross-section.
Abstract:
A microfluidic device may include a sample distribution network including a plurality of sample chambers configured to be loaded with biological sample for biological testing of the biological sample while in the sample chambers. The sample distribution network may further include a plurality of inlet channels, each inlet channel being in flow communication with and configured to flow biological sample to a respective sample chamber, and a plurality of outlet channels, each outlet channel being in flow communication and configured to flow biological sample from a respective sample chamber. At least some of the sample chambers may include a physical modification configured to control the movement of the meniscus so as to control bubble formation or dried reagent positioned within the at least some sample chambers proximate the inlet channels in flow communication with the at least some sample chambers.
Abstract:
Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
Abstract:
A fluid processing device is provided that includes a substrate, a plurality of fluid retainment regions formed in or on the substrate, and a barrier at least partially separating two or more of the fluid retainment regions. The barrier includes a mixture of a sequestering material and a reaction component. The reaction component can be at least one of a reactant, a reagent, a catalyst, an initiator, a promoter, a cofactor, an enzyme, a salt, or a combination thereof. The sequestering material can be a porous material, a dissolvable material, or both.
Abstract:
In some embodiments, an analyte detection system is provided that includes a nanochannel, an electrode arrangement, and a plurality of nanoFET devices disposed in the nanochannel. A plurality of nucleic acid base detection components can be used that include a plurality of nanopores, a plurality of nanochannels, a plurality of hybridization probes, combinations thereof, and the like. According to other embodiments of the present teachings, different coded molecules are hybridized to a target DNA molecule and used to detect the presence of various sequences along the target molecule. A kit including mixtures of coded molecules is also provided. In some embodiments, devices including nanochannels, nanopores, and the like, are used for manipulating movement of DNA molecules, for example, in preparation for a DNA sequencing detection. Nanopore structures and methods of making the same are also provided as are methods of nucleic acid sequencing using the nanopore structures. Surface-modified nanopores are provided as are methods of making them. In some embodiments, surfaced-modified nanopores for slowing the translocation of single stranded DNA (ssDNA) through the nanopore are provided, as are nanopores configured to detect each of a plurality of different bases on an ssDNA strand.
Abstract:
An assay card and devices and methods for isolating chambers on the assay card are described. The assay card comprises a substrate formed of one or more materials, e.g., plastic, having a softening temperature, the substrate defining channels communicating with respective reaction chambers. The assay card may be heated in a region of the channels to at least the softening temperature. The softened plastic may be deformed, e.g., with a tool which may or may not also provide the heat for softening the substrate. In this manner, the plastic of the substrate may be caused to at least partially obstruct the channels, thereby isolating the reaction chambers. The invention also relates to a method of manufacturing a tool device that includes pins for heating and deforming an assay card.
Abstract:
A microfluidic device may include a sample distribution network including a plurality of sample chambers configured to be loaded with biological sample for biological testing of the biological sample while in the sample chambers. The sample distribution network may further include a plurality of inlet channels, each inlet channel being in flow communication with and configured to flow biological sample to a respective sample chamber, and a plurality of outlet channels, each outlet channel being in flow communication and configured to flow biological sample from a respective sample chamber. At least some of the sample chambers may include a physical modification configured to control the movement of the meniscus so as to control bubble formation or dried reagent positioned within the at least some sample chambers proximate the inlet channels in flow communication with the at least some sample chambers.
Abstract:
In some embodiments, an analyte detection system is provided that includes a nanochannel, an electrode arrangement, and a plurality of nanoFET devices disposed in the nanochannel. A plurality of nucleic acid base detection components can be used that include a plurality of nanopores, a plurality of nanochannels, a plurality of hybridization probes, combinations thereof, and the like. According to other embodiments of the present teachings, different coded molecules are hybridized to a target DNA molecule and used to detect the presence of various sequences along the target molecule. A kit including mixtures of coded molecules is also provided. In some embodiments, devices including nanochannels, nanopores, and the like, are used for manipulating movement of DNA molecules, for example, in preparation for a DNA sequencing detection. Nanopore structures and methods of making the same are also provided as are methods of nucleic acid sequencing using the nanopore structures. Surface-modified nanopores are provided as are methods of making them. In some embodiments, surfaced-modified nanopores for slowing the translocation of single stranded DNA (ssDNA) through the nanopore are provided, as are nanopores configured to detect each of a plurality of different bases on an ssDNA strand.