Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films that include antireflective structures are disclosed.
Abstract:
Transfer films comprising a carrier film, a sacrificial template layer deposed on the carrier film and comprising reentrant forming template features, and a thermally stable backfill layer having a first surface conforming to the reentrant forming template features and forming reentrant features and an opposing planar second surface; and methods of making transfer films are disclosed.
Abstract:
Methods for transferring nanoparticles and nanowires to permanent glass receptors using transfer films. The transfer films include nanoparticles within a sacrificial material having a structured backfill layer on a substrate and a nanowire formulation between sacrificial substrates. To transfer the nanoparticles, the transfer film is laminated to a glass receptor, the substrate is removed, and the sacrificial material is baked-out to leave the nanoparticles aligned within the structured surface of the backfill layer on the glass receptor. To transfer the nanowires, the transfer film is laminated to a glass receptor, and the sacrificial substrates are baked-out to leave the nanowires aligned on the glass receptor.
Abstract:
A method of making an optical film includes calendering at least one polymeric material and stretching the at least one polymeric material along a downweb (MD) direction, thereby creating birefringence in the polymeric material. A roll of optical film includes an oriented optical film characterized by an effective orientation axis, the oriented optical film including a birefringent polymeric material, the optical film having a width of greater than 0.3 m, a thickness of at least 200 microns and a length a length of at least 10 m, wherein the effective orientation axis is aligned along the length of the optical film.
Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each electrical protolayer independently comprising at least 25 wt% sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 10 3 and 10 4 Poise at a shear rate of 100/s when heated to a temperature between its T g and T dec .
Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films that include embedded nanostructures are disclosed. The articles include a sacrificial template layer having a first surface and a second surface having a structured surface opposite the first surface and a thermally stable backfill layer applied to the second surface of the sacrificial template layer. The thermally stable backfill layer has a structured surface conforming to the structured surface of the sacrificial template layer and the sacrificial template layer comprises inorganic nanomaterials and sacrificial material. The sacrificial material in the sacrificial template layer is capable of being cleanly baked out while leaving a densified layer of inorganic nanomaterials on the structured surface of the thermally stable backfill layer.
Abstract:
A transfer tape is disclosed that includes a carrier, a template layer having a first surface applied to the carrier and having a second surface opposite the first surface, wherein the second surface comprises a non-planar structured surface, a release coating disposed upon the non- planar structured surface of the template layer, and a backfill layer disposed upon and conforming to the non-planar structured surface of the release coating. In some embodiments, the backfill layer includes a silsesquioxane such as polyvinyl silsesquioxane. The disclosed transfer tape can be used to transfer replicated structures to a receptor substrate.
Abstract:
The present disclosure relates to transfer tapes, segmented and non-segmented which include at least one graphics layer. The transfer tapes include a removable template layer, a transfer layer which includes a backfill layer, having at least one first graphics layer, and an adhesive layer. Segmented transfer tapes further at least one transferable segment, at least one non-transferable segment in the segmented transfer tape and include at least one kerf. The present disclosure also provides optical assemblies, e.g. micro-optical assemblies, which may be fabricated from the transfer tapes which include at least one graphics layer. The present disclosure also provides methods of forming the transfer tapes and methods of making the micro optical assemblies.
Abstract:
The present disclosure relates to a transfer film comprising a sacrificial template layer having a first surface and a second surface having a structured surface opposite the first surface, a thermally stable backfill layer conforming to the structured surface of the sacrificial template layer, and wherein a portion of the sacrificial template layer proximate the first surface has a greater concentration of a thermally stable molecular species than a portion of the sacrificial template layer proximate the second surface.
Abstract:
Pillar delivery films for vacuum insulated glass units. The delivery films include a support film or pocket tape, a sacrificial material on the support film, and a plurality of pillars. The pillars are at least partially embedded in the sacrificial material or formed within sacrificial material molds, and the sacrificial material is capable of being removed while leaving the pillars substantially intact. In order to make an insulated glass unit, the delivery films are laminated to a receptor such as a glass pane, and the support film and sacrificial material are removed to leave the pillars remaining on the glass.