Abstract:
Method is disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
Abstract:
Stents including a poly(D,L-lactide)(PDLLA)-based scaffold and PDLLA based therapeutic layer are disclosed. The PDLLA based scaffold may be amorphous and may include a primer layer. Methods of applying the PDLLA-based coating to the scaffold are disclosed with solvent processing methods using a solvent blend are also disclosed. Methods of removing residual solvent from a PDLLA-base coating that also condition the scaffold are disclosed. Methods of treating restenosis that release drugs to prevent restenosis without interfering with the natural positive remodeling of a vessel are disclosed.
Abstract:
The invention is directed to an expandable stent for implanting in a body lumen, such as a coronary artery, peripheral artery, or other body lumen. The invention provides for an intravascular stent having a plurality of cylindrical rings connected by links. The links between adjacent rings provide axial strength when subjected to longitudinal compressive forces.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold has a structure that produces a low late lumen loss when implanted within a peripheral vessel and also exhibits a high axial fatigue life. In a preferred embodiment the scaffold forms ring structures interconnected by links, where a ring has 12 crowns and at most two links connecting adjacent rings.
Abstract:
A stent (10) includes a plurality of rings (20) which form a tubular scaffold. The rings include an elongation mechanism (30) which allows for further expansion of the stent.
Abstract:
Methods of treating coronary artery disease (CAD) with bioresorbable stents resulting in reduced angina or non-ischemic chest pain are described. Methods of treatment and devices for treatment of angina and post-procedural chest pain that include anti-angina agents incorporated into the device are disclosed.
Abstract:
A stent for implantation in a body lumen, comprising a plurality of rings, each ring being connected to an adjacent ring by at least one link, each ring including a plurality of peaks and valleys, wherein each peak is connected to an adjacent valley by a strut to provide an undulating pattern within each ring. Further, wherein each of a plurality of the struts comprise a first portion and a second portion; each portion has a thickness that is substantially constant throughout both first and second portions; and each portion has a width that is substantially constant throughout both first and second portions. The first portion is connected to the second portion through a reduced zone positioned at a mid-point of the strut, wherein the reduced zone has a minimum thickness between 30% and 80% of the thickness of the first and second portions.