Abstract:
Method is disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
Abstract:
Disclosed herein are drug delivery medical devices. A polymer coating for a medical device is provided which comprises a minimum amount of a drug bonded to the polymer in the coating.
Abstract:
This invention relates to methods of including an oxygen-sensitive macrocyclic triene on an implantable medical device wherein the device includes separate antioxidant-containing layers above, below or both above and below the drug reservoir layer containing the macrocyclic triene.
Abstract:
Methods and systems for controlling the moisture content of biodegradable and bioresorbable polymer resin during extrusion above a lower limit that allows for plasticization of the polymer resin melt and below an upper limit to reduce or prevent molecular weight loss are disclosed. Methods are further disclosed involving plasticization of a polymer resin for feeding into an extruder with carbon dioxide and freon.
Abstract:
It is provided herein modified polylactide (PLA) polymers comprising biocompatibile functional group(s) on the polymers and methods of making and using the modified PLA polymers.
Abstract:
A composition for loading into a structural element of a stent, where the structural element is defined by a lumen and at least one opening to access the lumen. The composition may comprise a therapeutic agent, and a chelator, a precipitation agent, or a combination thereof. Medical devices, such as stents, with a structural element defined by a lumen and at least one opening to access the lumen, filled with the compositions are also described.
Abstract:
Methods are disclosed for conditioning a polymeric stent after sterilization, and/or after crimping and before packaging, such that the properties of the polymeric stent fall within a narrower range of values. The stent is exposed to a controlled temperature at or above ambient for a period of time after radiation sterilization and/or after crimping and before sterilization. As a result, the polymeric stent properties, particularly radial strength and number- average molecular weight of the polymer of the polymeric stent, fall within a narrower range.
Abstract:
Methods of making polymeric devices, such as stents, using solvent based processes. More particularly, methods of making bioabsorbable stents.