Abstract:
Structures for use in compressible resilient pads and methods of making thereof are disclosed. One structure includes one or more layers of a nonwoven extruded film or sheet, wherein the nonwoven extruded film or sheet is elastic, resilient, and compressible in a thickness direction, and extensible, bendable and resilient in its length and transverse directions, and two or more layers of a plurality of substantially parallel longitudinal direction yarns. The structure has a high degree of both compressibility under an applied normal load and excellent recovery (resiliency or spring back) upon removal of that load.
Abstract:
A structure for use in industrial fabrics such as paper machine clothing and engineered fabrics is disclosed. The structure includes one or more layers of an elastic nonwoven extruded film or sheet, which is elastic, resilient, and compressible in a thickness direction, and extensible, bendable, and resilient in its length and transverse directions, and one or more layers of a plurality of substantially parallel machine direction (MD) yarns in various patterns. The structure can also include one or more layers of a plurality of substantially parallel cross-machine direction (CD) yarns attached on top of or under the MD yarns. The structure has a high degree of both compressibility under an applied normal load and excellent recovery (resiliency or spring back) upon removal of that load.
Abstract:
The invention disclosed herein relates to the use of laser energy to weld or fuse selected locations in paper machine clothing ("PMC") and other industrial and engineered fabrics. The invention also relates to an improved loop seam for an on machine seamable papermaker or other industrial fabric.
Abstract:
An industrial fabric such as an endless belt or sleeve for use in the production of nonwovens, and a method of making thereof are disclosed. The industrial fabric is produced by spirally winding strips of polymeric material, such as an industrial strapping or ribbon material, and joining the adjoining sides of the strips of material using ultrasonic welding or laser welding techniques. The fabric may then be perforated using a suitable technique to make it permeable to air and/or water.
Abstract:
An industrial fabric, belt or sleeve and a method of making the fabric, belt or sleeve are disclosed. The industrial fabric, belt or sleeve is produced by spirally winding strips of polymeric material, such as an industrial strapping or ribbon material, and joining the adjoining sides of the strips of material using ultrasonic welding or laser welding techniques. The fabric, belt or sleeve may then be perforated using a suitable technique to make it permeable to air and/or water.
Abstract:
A multilayer belt structure that can be used for creping or structuring a cellulosic web in a tissue making process. The multilayer belt structure allows for the formation of various shaped and sized openings in the top surface of the belt, while still providing a structure having the strength, durability, and flexibility required for tissue making processes.
Abstract:
A multilayer belt structure that can be used for creping or structuring a cellulosic web in a tissue making process. The multilayer belt structure allows for the formation of various shaped and sized openings in the top surface of the belt, while still providing a structure having the strength, durability, and flexibility required for tissue making processes.
Abstract:
An industrial fabric such as an endless belt or sleeve for use in the production of nonwovens, and a method of making thereof are disclosed. The industrial fabric is produced by spirally winding strips (16) of polymeric material, such as an industrial strapping or ribbon material, and joining the adjoining sides of the strips (16) of material using ultrasonic welding or laser welding techniques. The fabric may then be perforated using a suitable technique to make it permeable to air and/or water.
Abstract:
An industrial fabric, belt or sleeve and a method of making the fabric, belt or sleeve are disclosed. The industrial fabric, belt or sleeve is produced by spirally winding strips (16) of polymeric material, such as an industrial strapping or ribbon material, and joining the adjoining sides of the strips (16) of material using ultrasonic welding or laser welding techniques. The fabric, belt or sleeve may then be perforated using a suitable technique to make it permeable to air and/or water.
Abstract:
A network element failure detector provides a fallback mechanism when external resources fail to load. For example, a "contingency" tag allows a consumer to load local resources when third party resources specified by a webpage developed by a service provider fail to load. Thus, the webpage developer can specify the functionality of a webpage when the referenced third party external resource fails to load. The consumer can also alert the service provider and/or the third party of the failure to load the referenced third party external resource.