Abstract:
A lens-free microscope system for automatically analyzing yeast cell viability in a stained sample includes a portable, lens-free microscopy device that includes a housing containing a light source coupled to an optical fiber, the optical fiber spaced away several centimeters from an image sensor disposed at one end of the housing, wherein the stained sample is disposed on the image sensor or a sample holder adjacent to the image sensor. Hologram images are transferred to a computing device having image processing software contained therein, the image processing software identifying yeast cell candidates of interest from back-propagated images of the stained sample, whereby a plurality of spatial features are extracted from the yeast cell candidates of interest and subject to a trained machine learning model to classify the yeast cell candidates of interest as live or dead.
Abstract:
A condenser lens, and an interferometric microscopy arrangement based on the condenser lens and a method based on the condenser lens are presented. The condenser lens shines a light beam from an illumination source onto a sample that is to be inspected by an interferometric microscopy device. The light beam from the illumination source has a first wavefront. The condenser lens includes a non-condensing region and a condensing region. The non-condensing region receives a first part of the light beam from the illumination source and transmits the first part towards the sample. The first part of the light beam so transmitted has the first wavefront. The condensing region receives a second part of the light beam from the illumination source and transmits the second part towards the sample. The second part of the light beam so transmitted has a second wavefront. The first wavefront is different from the second wavefront.
Abstract:
Способ определения параметров объекта и устройство для его реализации (варианты) путем непосредственного измерения фазы переменной составляющей фототока с частотой Δf между частотными параметрами каждого из пары разнесенных по частоте и в пространстве и отраженных от поверхности исследуемого объекта (или прошедших сквозь него) сканирующих световых пучков и воссоздания изображения рельефа поверхности исследуемого объекта или построения его «карты рефракции» (распределение плотности), который относится к способам и средствам, использующим методы дифференциально-фазовой профилометрии/профилографии и оптической рефрактометрии и может быть использован практически во всех отраслях промышленности - в автомобильной, авиационной, авиакосмической, химической, электронной, оптической и медицинской промышленности, в машиностроении при изготовлении различных деталей, агрегатов и машин, высокоэффективных турбосистем, в приборостроении, особенно в производстве подшипников, а также для определения эксплуатационных параметров топливно-смазочных материалов, например, для экспресс-анализа с целью определения количества и размеров частиц в маслах, топливе и нефтепродуктах, в прозрачных веществах и биологических средах.
Abstract:
A system and method of determining a focal position for an objective positioned at a measurement location of a sample holder in a microscopy imaging system are provided. The objective is moved to a position relative to the sample holder that corresponds to a distance between the objective and the sample holder. The sample holder has a conditioned upper surface. A focusing light beam is projected onto the sample holder when the objective is located at the position, and the objective focuses the focusing light beam on the sample holder. A reflected light beam resulting from reflection of the focusing light beam off the conditioned upper surface is observed. The focal position for the objective is determined based on the reflected light beam such that the objective produces an in focus image of a microscopy sample when the objective is located at the focal position.
Abstract:
Procedimiento para la obtención de imágenes de muestras en microscopía óptica que permite obtener imágenes con información completa cuantitativa de fase o diferencia de camino óptico de muestras (M) microscópicas mediante la generación de imágenes simultaneas de gradiente de fase. La luz emergente de la muestra, iluminada por una diversidad de ondas planas, se divide en cuatro haces mediante el uso de medios ópticos o electro- ópticos. Simultáneamente se genera la imagen de la muestra con los cuatro haces sobre un sensor matricial. Las imágenes están directamente relacionadas con el gradiente. Un algoritmo de integración numérica obtiene la fase a partir de la información de gradiente. De utilidad especial como técnica de microscopia en biología y biomedicina.
Abstract:
The present invention relates to a high-resolution surface plasmon microscope that includes a heterodyne interferometer (6) splitting an excitation light beam into at least one reference beam and at least one measurement beam directed into an optical coupling medium (7) for generating a surface plasmon, said heterodyne interferometer essentially being formed from optical guiding fibres (12, 13, 14, 15) optically connected at a first of their ends to an optical coupler (16) and also optically connected at their second end to a light source (1), to an optical coupling medium (7), a reference-beam reflecting element (17) and means (28) for detecting an interferometer beam respectively.
Abstract:
A coherence scanning interferometer (2) carries out: a coherence scanning measurement operation on a surface area (81 ) carrying a structure using a low numeric aperture objective so that the pitch of the surface structure elements (82) is much less that the spread of the point spread function at the surface (7) to obtain structure surface intensity data; and a coherence scanning measurement operation on a non-structure surface area (83), which may be part of the same sample or a different sample, to obtain non-structure surface intensity data. A frequency transform ratio determiner (105) determines a frequency transform ratio (the HCF function) related to the ratio between the structure surface intensity data and the non-structure surface intensity data. A structure provider (109) sets that frequency transform ratio equal to an expression which represents the electric field at the image plane of the coherence scanning interferometer in terms of surface structure element size (height or depth) and width-to-pitch ratio and derives the surface structure element size and width-to-pitch ratio using the frequency transform ratio. The structure provider (109) may also extract the surface structure element width, if the pitch is independently known.
Abstract:
A method of using an interferometric confocal microscope to measure features of a trench or via in a. substrate, wherein the interferometric confocal microscope produces a measurement beam (240), the method involving: focusing the measurement beam at a selected location (168) at or near the bottom of the trench or via (150) to excite one or more guided-wave modes within the trench or via; measuring properties of a return measurement beam (242) that is produced when the measurement beam is focused at the selected location, wherein the return measurement beam includes a component corresponding to a radiated field from the one or more guided-wave modes that are excited within the trench; and determining the features of the trench or via from the measured properties of the return measurement beam.
Abstract:
An interferometery system (110) for making interferometric measurements of an object, the system including: a beam generation module (124) which during operation delivers an output beam that includes a first beam at a first frequency and a second beam at a second frequency that is different from the first frequency, the first and second beams within the output beam being coextensive, the beam generation module including a beam conditioner (122) which during operation introduces a sequence of different shifts in a selected parameter of each of the first and second beams, the selected parameter selected from a group consisting of phase and frequency; a detector assembly having a detector element (170); and an interferometer constructed to receive the output beam at least a part of which represents a first measurement beam at the first frequency and a second measurement beam at the second frequency, the interferometer further constructed to image both the first and second measurement beams onto a selected spot on the object (160) to produce therefrom corresponding first and second return measurement beams, and to then simultaneously image the first and second return measurement beams onto said detector element (170).
Abstract:
An imaging system includes: an object wavefront source (12) and an optical microscope objective (4) all positioned to direct an object wavefront onto an area of a vibrating subject (6) surface encompassed by a field of view of the microscope objective (4), and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material (XTAL); and a reference wavefront source (12) and at least one phase modulator (MOD) all positioned to direct a reference wavefront through the phase modulator (MOD) and to direct a modulated reference wavefront from the phase modulator (MOD) through the photorefractive material (XTAL) to interfere with the modulated object wavefront. The photorefractive material (XTAL) has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, (XTAL) providing a full-field, real-time image signal of the encompassed surface area (6).