Abstract:
Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
Abstract:
A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer. A method of devising such a measurement target involving locating an assist feature at a periphery of the sub-targets, the assist feature being configured to reduce measured intensity peaks at the periphery of the sub-targets.
Abstract:
Disclosed is a method of devising a target arrangement, and associated target and reticle. The target comprises a plurality of gratings, each grating comprising a plurality of substructures. The method comprises the steps of: defining a target area; locating the substructures within the target area so as to form the gratings; and locating assist features at the periphery of the gratings, the assist features being configured to reduce measured intensity peaks at the periphery of the gratings. The method may comprise an optimization process comprising modelling a resultant image obtained by inspection of the target using a metrology process; and evaluating whether the target arrangement is optimized for detection using a metrology process.
Abstract:
A substrate has first and second target structures formed thereon by a lithographic process, lithographic process comprising at least two lithographic steps. Each target structure has two-dimensional periodic structure formed in a single material layer, wherein, in the first target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a first bias amount, and, in the second target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a second bias amount. An angle- resolved scatter spectrum of the first target structure and an angle-resolved scatter spectrum of the second target structure is obtained, and a measurement of a parameter of a lithographic process is derived from the measurements using asymmetry found in the scatter spectra of the first and second target structures.
Abstract:
In a dark-field metrology method using a small target, a characteristic of an image of the target, obtained using a single diffraction order, is determined by fitting a combination fit function to the measured image. The combination fit function includes terms selected to represent aspects of the physical sensor and the target. Some coefficients of the combination fit function are determined based on parameters of the measurement process and/or target. In an embodiment the combination fit function includes jinc functions representing the point spread function of a pupil stop in the imaging system.
Abstract:
A method of determining an estimated intensity of radiation scattered by a target illuminated by a radiation source, has the following steps: obtaining and training (402) a library REFLIB of wavelength- dependent reflectivity as a function of the wavelength, target structural parameters and angle of incidence R(λ,θ,x,y); determining (408) a wide-band library (W-BLIB) of integrals of wavelength-dependent reflectivity R of the target in a Jones framework over a range of radiation source wavelengths λ; training (TRN) (410) the wide-band library; and determining (412), using the trained wide-band library, an estimated intensity (INT) of radiation scattered by the target illuminated by the radiation source.
Abstract:
A substrate has a plurality of overlay gratings formed thereon by a lithographic process. Each overlay grating has a known overlay bias. The values of overlay bias include for example two values in a region centered on zero and two values in a region centered on P/2, where P is the pitch of the gratings. Overlay is calculated from asymmetry measurements for the gratings using knowledge of the different overlay bias values, each of the overall asymmetry measurements being weighted by a corresponding weight factor. Each one of the weight factors represents a measure of feature asymmetry within the respective overlay grating. The calculation is used to improve subsequent performance of the measurement process, and/or the lithographic process. Some of the asymmetry measurements may additionally be weighted by a second weight factor in order to eliminate or reduce the contribution of phase asymmetry to the overlay.
Abstract:
A substrate has three or more overlay gratings formed thereon by a lithographic process. Each overlay grating has a known overlay bias. The values of overlay bias include for example two values in a region centered on zero and two values in a region centered on P/2, where P is the pitch of the gratings. Overlay is calculated from asymmetry measurements for the gratings using knowledge of the different overlay bias values and an assumed non- linear relationship between overlay and target asymmetry, thereby to correct for feature asymmetry. The periodic relationship in the region of zero bias and P/2 has gradients of opposite sign. The calculation allows said gradients to have different magnitudes as well as opposite sign. The calculation also provides information on feature asymmetry and other processing effects. This information is used to improve subsequent performance of the measurement process, and/or the lithographic process.
Abstract:
The disclosure relates to determining a value of a parameter of interest of a patterning process. A plurality of calibration data units is obtained from targets in a metrology process. Each of at least two of the calibration data units represents detected radiation obtained using different respective polarization settings in the metrology process, each polarization setting defining a polarization property of incident radiation of the metrology process and a polarization property of detected radiation of the metrology process. The calibration data units are used to obtain calibration information about the metrology process. A measurement data unit representing detected radiation scattered from a further target is obtained, the further target comprising a structure formed using the patterning process on the substrate or on a further substrate. The value of the parameter of interest is determined using the measurement data unit and the obtained calibration information.
Abstract:
Disclosed is a method of measuring a parameter of a lithographic process, and associated computer program and apparatuses. The method comprises providing a plurality of target structures on a substrate, each target structure comprising a first structure and a second structure on different layers of the substrate. Each target structure is measured with measurement radiation to obtain a measurement of target asymmetry in the target structure, the target asymmetry comprising an overlay contribution due to misalignment of the first and second structures, and a structural contribution due to structural asymmetry in at least the first structure. A structural asymmetry characteristic relating to the structural asymmetry in at least the first structure of each target structure is obtained, the structural asymmetry characteristic being independent of at least one selected characteristic of the measurement radiation. The measurement of target asymmetry and the structural asymmetry characteristic is then used to determine the overlay contribution of the target asymmetry of each target structure.