Abstract:
An apparatus includes a substrate, a thin-film-transistor (TFT) array, a circuit, driving lines, and straight signal lines. The substrate includes a first area and a second area. The TFT array is in the first area of the substrate. The circuit is in the second area of the substrate and in electrical communication with the TFT array. The driving lines are in the second area of the substrate between a first edge of the substrate and the circuit. The driving lines are in electrical communication with the circuit. The straight signal lines are aligned with and in electrical communication with the driving lines in the second area of the substrate. The straight signal lines extend to a second edge of the substrate perpendicular to the first edge.
Abstract:
An extrusion system (100) according to certain aspects includes at least one infrared emitting device (102) arranged in a generally cylindrical shape with a hollow interior. The at least one infrared emitting device (102) is positioned downstream of an outlet of an extrusion die (110) to irradiate a perimeter of wet extrudate material in a uniform manner to form stiffened wet extrudate material (116) before such material is received by an extrudate support channel (118). The at least one infrared emitting device (102) generally uniformly stiffens the skin of the wet extrudate material (116) to resist mechanical deformation of the extrudate material during subsequent handling steps. Such skin stiffening allows for increased tolerance of handling forces and permits extrusion of softer wet extrudate material without compromising the shape of a fired ceramic product.
Abstract:
A method for laser processing a transparent workpiece includes forming a contour line that includes defects, by directing a pulsed laser beam output by a beam source through an aspheric optical element positioned offset in a radial direction from the beam pathway and into the transparent workpiece such that the portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece that produces a defect within the transparent workpiece. The portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength λ, an effective spot size w o,eff , and a non-axisymmetric beam cross section having a minimum Rayleigh range Z Rx,min in an x-direction and a minimum Rayleigh range Z Ry,min min in a y-direction. Further, the smaller of Z Rx,min and Z Ry,min is greater than formula (I), where F D is a dimensionless divergence factor comprising a value of 10 or greater.
Abstract:
A strengthened glass sheet or article having an edge profile that provides improved edge strength, particularly when the strengthened glass sheet is subjected to a four point bend test, and a method of making a glass sheet having such an edge. The edge is formed by cutting or other separation methods and then ground to a predetermined profile such as a pencil or bullet profile, a bull nose profile, or the like. In some embodiments, the edge is polished and/or etched following grinding to reduce flaw size.
Abstract:
Laminated glass-based articles are provided. The glass-based articles include at least a first glass-based layer, a second glass-based layer, and a polymer layer disposed between the first and second glass-based layers. The first glass-based layer includes a compressive stress. A difference between the coefficient of thermal of expansion of the first glass-based layer and the coefficient of thermal of expansion of the second glass-based layer is greater than or equal to 0.4 ppm/°C. Methods of producing the laminated glass-based articles are also provided.
Abstract:
A thin-walled honeycomb body (100) having a plurality of repeating cell structures (110) formed of intersecting porous thick walls (112V, 112H) and thin walls (114V, 114H). Each repeating cell structure (110) is bounded on its periphery by the thick walls (112V, 122H) of a first transverse thickness (Tk) and the thin walls (114V, 114H) have a second transverse thickness (Tt) that subdivides each repeating cell structure (110) into between 7 and 36 individual cells (108). In the thin-walled honeycomb body (100), the first transverse thickness (Tk) of the thick walls (112V, 112H) is less than or equal to 0.127 mm (0.005 inch) and the second transverse thickness (Tt) of the thin walls (114V, 114H) is less than or equal to 0.0635 mm (0.0025 inch), and Tk > Tt. Honeycomb extrusion dies and methods of manufacturing the thin-walled honeycomb body (100) having thick walls (112V, 112H) and thin walls (114V, 114H) are provided.
Abstract:
A method of manufacturing a honeycomb body, comprising extruding honeycomb extrudate (200) in an axial direction (A), the honeycomb extrudate (200) having an outer periphery (206); and laser machining in situ the honeycomb extrudate (200) to form a laser cut in the honeycomb extrudate. A system for in situ cutting a wet green ceramic extrudate, comprising a laser (500, 732, 826) configured to irradiate laser energy to an outer periphery of a wet green ceramic article, the laser energy adapted to cut through at least a portion of the outer periphery (206).
Abstract:
A method and system to dry crack-free and high strength skin including an inorganic binder of an average particle size (D50) in a range between 10 nm and 700 nm on a porous ceramic body. The method includes supporting the honeycomb body on an end face such that axial channels and outer periphery are substantially vertical. A gas is flowed past the honeycomb body substantially parallel to the axial channel direction, substantially equally around the outer periphery of the skin, to uniformly dry the skin to form a partially dried skin under mild conditions. Then the partially dried skin may be dried more severely resulting in rapidly dried crack-free and high strength skin.
Abstract:
An extrusion system (100) includes at least one sensor (102, 104) to detect localized presence of oil (701) on an exterior surface (715) or skin of wet extrudate material (714 e.g., ceramic material having a honeycomb cross-sectional shape), and at least one infrared emitting device (106, 108) configured to impinge infrared emissions on at least a portion of the exterior surface responsive to one or more sensor signals. Localized impingement of infrared emissions may reduce presence of oil streaks (701) without undue differential drying of the extrudate skin (715), and avoid surface fissures that would otherwise result in fired ceramic bodies. Separately controllable infrared emitters (502), or at least one controllable infrared blocking or redirecting element (603), may be used to impinge infrared emissions on selected areas. A humidification section (120) arranged downstream of infrared emitters (106, 108) may be used to at least partially rehydrate the wet extrudate material, if necessary.
Abstract:
A method and corresponding apparatus for processing optical fiber include directing light from a directed light source toward an optical fiber on a fiber draw. A fiber core of the optical fiber is heated, using at least the light from the directed light source, to a fiber core temperature within a glass transformation temperature range of the fiber core. The method can be used to reduce fictive temperature of the fiber core, with Rayleigh scattering being reduced, leading to lower attenuation losses in the fiber core.