Abstract:
A substrate comprising a plurality of wet-able pads formed on a surface of the substrate; and a solder resist layer deposited on the surface of the substrate is obtained. At least the solder resist layer is formed with recessed regions defining volumes adjacent the wet- able pads. Molten solder is directly injected into the volumes adjacent the wet-able pads, such that the volumes adjacent the wet-able pads are filled with solder and the solder solidifies forming a plurality of solder structures adhered to the wet-able pads. The substrate and the solder are re-heated after the solidification, to re-flow the solder into generally spherical balls extending above the outer surface of the solder resist layer. In an alternative approach, solder injection and solidification are carried out in a nitrogen environment or a forming gas environment, and the reflow step may be omitted.
Abstract:
A method for spalling a layer from an ingot of a semiconductor substrate includes forming a metal layer on the ingot of the semiconductor substrate, wherein a tensile stress in the metal layer is configured to cause a fracture in the ingot; and removing the layer from the ingot at the fracture. A system for spalling a layer from an ingot of a semiconductor substrate includes a metal layer formed on the ingot of the semiconductor substrate, wherein a tensile stress in the metal layer is configured to cause a fracture in the ingot, and wherein the layer is configured to be removed from the ingot at the fracture.
Abstract:
A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell.