Abstract:
Described is an low overhead method and apparatus to reconfigure a pair of buffered interconnect links to operate in one of these three modes-first mode (e.g., bandwidth mode), second mode (e.g., latency mode), and third mode (e.g., energy mode). In bandwidth mode, each link in the pair buffered interconnect links carries a unique signal from source to destination. In latency mode, both links in the pair carry the same signal from source to destination, where one link in the pair is "primary" and other is called the "assist". Temporal alignment of transitions in this pair of buffered interconnects reduces the effective capacitance of primary, thereby reducing delay or latency. In energy mode, one link in the pair, the primary, alone carries a signal, while the other link in the pair is idle. An idle neighbor on one side reduces energy consumption of the primary.
Abstract:
Described is an apparatus which comprises: a word line; a source line; a bit-line; and a memory bit-cell coupled to the source line, the bit-line, and the word line, wherein the memory bit-cell comprises a capacitor including ferroelectric material and a transistor fabricated on a backend of a die.
Abstract:
Techniques are disclosed for forming resistive random-access memory (RRAM) including a tunnel source access transistor, such as a tunnel source MOSFET. The use of a tunnel source access transistor includes integrating a tunnel diode on the bitcell transistor's source terminal using epitaxial growth. Accordingly, such RRAM bitcells are referred to herein as having a 1T(D)-1R configuration. As can be understood based on this disclosure, the tunnel diode's resistance is asymmetric with respect to RRAM write voltage. Thus, the tunnel diode optimizes array operations for the 1T(D)-1R bitcells described herein, enabling both control of current compliance in the SET direction and maximization of current in the RESET direction from the same RRAM bitcell. The 1T(D)-1R architecture is compatible with a multitude of RRAM device structures and transistor types, such as NMOS and PMOS configurations. Further, the tunnel diode can be integrated in a MOSFET access transistor without increasing cell layout area.
Abstract:
Embodiments include apparatuses, methods, and systems for a circuit to shift a voltage level. The circuit may include a first inverter that includes a first transistor coupled to pass a low voltage signal and a second inverter coupled to receive the low voltage signal. The circuit may further include a second transistor coupled to receive the low voltage signal from the second inverter to serve as a feedback device and produce a high voltage signal. In embodiments, the first transistor conducts asymmetrically to prevent crossover of the high voltage signal into the low voltage domain. A low voltage memory array is also described. In embodiments, the circuit to shift a voltage level may assist communication between a logic component including the low voltage memory array of a low voltage domain and a logic component of a high voltage domain. Additional embodiments may also be described.
Abstract:
Field effect transistors having a ferroelectric or antiferroelectric gate dielectric structure are described. In an example, an integrated circuit structure includes a semiconductor channel structure includes a monocrystalline material. A gate dielectric is over the semiconductor channel structure. The gate dielectric includes a ferroelectric or antiferroelectric polycrystalline material layer. A gate electrode has a conductive layer on the ferroelectric or antiferroelectric polycrystalline material layer, the conductive layer including a metal. A first source or drain structure is at a first side of the gate electrode. A second source or drain structure is at a second side of the gate electrode opposite the first side.
Abstract:
There is disclosed in one example a charge pump, including: a clock signal; an inverse clock signal; a first ferroelectric capacitor; a second capacitor; and a charge pump circuit electrically located between the first ferroelectric capacitor and the second capacitor.
Abstract:
An apparatus is provided which comprises: a select line; a select transistor coupled to a resistive memory element and to the select line; a word-line coupled to a gate terminal of the select transistor; and a current mirror operable to be coupled to the select line during a first mode and to be de-coupled during a second mode.
Abstract:
One embodiment provides an apparatus. The apparatus includes a first transistor and a second transistor. The first transistor includes a first drain, a first source coupled to the first drain by a first channel, and a first gate stack comprising a plurality of layers. The second transistor includes a second drain, a second source coupled to the second drain by a second channel, and a second gate stack comprising a plurality of layers. Each gate stack includes a work function material layer to optimize a threshold voltage variation between the transistors.
Abstract:
One embodiment provides an apparatus. The apparatus includes a first inverter comprising a first pull up transistor and a first pull down transistor; a second inverter cross coupled to the first inverter, the second inverter comprising a second pull up transistor and a second pull down transistor; a first access transistor coupled to the first inverter; and a second access transistor coupled to the second inverter. A gate electrode of one transistor of each inverter comprises a polarization layer.
Abstract:
Described is an apparatus to reduce or eliminate imprint charge, wherein the apparatus which comprises: a source line; a bit-line; a memory bit-cell coupled to the source line and the bit-line; a first multiplexer coupled to the bit-line; a second multiplexer coupled to the source-line; a first driver coupled to the first multiplexer; a second driver coupled to the second multiplexer; and a current source coupled to the first and second drivers.