Abstract:
A device for inductively confining capacitively coupled RF plasma formed in a plasma processing apparatus. The apparatus includes an upper electrode and a lower electrode that is adapted to support a substrate and to generate the plasma between the substrate and the upper electrode. The device includes a dielectric support ring that concentrically surrounds the upper electrode and a plurality of coil units mounted on the dielectric support ring. Each coil unit includes a ferromagnetic core positioned along a radial direction of the dielectric support ring and at least one coil wound around each ferromagnetic core. The coil units generate, upon receiving RF power from an RF power source, electric and magnetic fields that reduce the number of charged particles of the plasma diffusing away from the plasma.
Abstract:
A plasma processing system for processing at least a substrate with plasma. The plasma processing chamber is capable of controlling ion energy distribution. The plasma processing system may include a first electrode. The plasma processing system also includes a second electrode that is different from the first electrode and is configured for bearing the substrate. The plasma processing system may also include a signal source coupled with the first electrode. The signal source may provide a non-sinusoidal signal through the first electrode to control ion energy distribution at the substrate when the substrate is processed in the plasma processing system, wherein the non-sinusoidal signal is periodic.
Abstract:
A movable plasma confinement structure configured for confining plasma in a plasma processing chamber during plasma processing of a substrate is provided. The movable plasma confinement structure includes a movable plasma-facing structure configured to surround the plasma. The movable plasma confinement structure also includes a movable electrically conductive structure disposed outside of the movable plasma-facing structure and configured to be deployed and retracted with the movable plasma-facing structure as a single unit to facilitate handling of the substrate. The movable electrically conductive structure is radio frequency (RF) grounded during the plasma processing. The movable plasma-facing structure is disposed between the plasma and the movable electrically conductive structure during the plasma processing such that RF current from the plasma flows to the movable electrically conductive structure through the movable plasma-facing structure during the plasma processing.
Abstract:
A plasma processing system having a plasma processing chamber configured for processing a substrate is provided. The plasma processing system includes at least an upper electrode and a lower electrode for processing the substrate. The substrate is disposed on the lower electrode during plasma processing, where the upper electrode and the substrate forms a first gap. The plasma processing system also includes an upper electrode peripheral extension (UE-PE). The UE-PE is mechanically coupled to a periphery of the upper electrode, where the UE-PE is configured to be non-coplanar with the upper electrode. The plasma processing system further includes a cover ring. The cover ring is configured to concentrically surround the lower electrode, where the UE-PE and the cover ring forms a second gap.
Abstract:
A plasma processing system for processing at least a substrate with plasma. The plasma processing chamber is capable of controlling ion energy distribution. The plasma processing system may include a first electrode. The plasma processing system also includes a second electrode that is different from the first electrode and is configured for bearing the substrate. The plasma processing system may also include a signal source coupled with the first electrode. The signal source may provide a non-sinusoidal signal through the first electrode to control ion energy distribution at the substrate when the substrate is processed in the plasma processing system, wherein the non-sinusoidal signal is periodic.
Abstract:
An apparatus used for rapid removal of polymer films from plasma confinement rings while minimizing erosion of other plasma etch chamber components is disclosed. The apparatus includes a center assembly, an electrode plate, a confinement ring stack, a first plasma source, and a second plasma source. The electrode plate is affixed to a surface of the center assembly with a channel defined along the external circumference therein. A first plasma source is disposed within the channel and along the external circumference of the center assembly, wherein the first plasma source is configured to direct a plasma to the inner circumferential surface of the confinement ring stack. A second plasma source located away from the first plasma source is configured to perform processing operations on a substrate within the etch chamber.
Abstract:
A method of fault detection for use in a plasma processing chamber is provided. The method comprises monitoring plasma parameters within a plasma chamber and analyzing the resulting information. Such analysis enables detection of failures and the diagnosis of failure modes in a plasma processing reactor during the course of wafer processing. The method comprises measuring the plasma parameters as a function of time and analyzing the resulting data. The data can be observed, characterized, compared with reference data, digitized, processed, or analyzed in any way to reveal a specific fault. Monitoring can be done with a detector such as a probe, which is preferably maintained within the plasma chamber substantively coplanar with a surface within the chamber, and directly measures net ion flux and other plasma parameters. The detector is preferably positioned at a grounded surface within the reactor such as a grounded showerhead electrode, and can be of a planar ion flux probe (PIF) type or a non-capacitive type. Chamber faults that can be detected include a build-up of process by-products in the process chamber, a helium leak, a match re-tuning event, a poor stabilization rate, and a loss of plasma confinement. If the detector is a probe, the probe can be embedded in a part of a plasma processing chamber and can comprises one or more gas feed-through holes.
Abstract:
A method of determining an endpoint of a process by measuring a thickness of a layer, the layer being deposited on the surface by a prior process is disclosed. The method includes providing a sensor that is coplanar with the surface, wherein the sensor is configured to measure the thickness. The method also includes exposing the plasma chamber to a plasma, wherein the thickness is changed by the exposing, and determining the thickness as a function of time. The method further includes ascertaining a steady state condition in the thickness, the steady state condition being characterized by a substantially stable measurement of the thickness, a start of the steady state condition representing the endpoint.
Abstract:
A method is provided for operating a processing system having a space therein arranged to receive a gas and an electromagnetic field generating portion operable to generate an electromagnetic field within the space. The method includes providing a gas into the space, and operating the electromagnetic field generating portion with a driving potential to generate an electromagnetic field within the space to transform at least a portion of the gas into plasma. The driving potential as a function of time is based on a first potential function portion and a second potential function portion. The first potential function portion comprises a first continuous periodic portion having a first amplitude and a first frequency. The second potential function portion comprises a second periodic portion having an maximum amplitude portion, and minimum amplitude portion and a duty cycle. The maximum amplitude portion is a higher amplitude than the minimum amplitude portion. The duty cycle is the ratio of a duration of the maximum amplitude portion to the sum of the duration of the maximum amplitude portion and the duration of the minimum amplitude portion. The second periodic portion additionally has a second frequency during the maximum amplitude portion. An amplitude modulation of the second periodic portion is phase locked to the first continuous periodic portion.
Abstract:
A method of determining an endpoint of a process by measuring a thickness of a layer, the layer being deposited on the surface by a prior process is disclosed. The method includes providing a sensor that is coplanar with the surface, wherein the sensor is configured to measure the thickness. The method also includes exposing the plasma chamber to a plasma, wherein the thickness is changed by the exposing, and determining the thickness as a function of time. The method further includes ascertaining a steady state condition in the thickness, the steady state condition being characterized by a substantially stable measurement of the thickness, a start of the steady state condition representing the endpoint.