Abstract:
A mesa structure is formed over a substrate. An alternating stack of insulating layers and spacer material layers having a total height of approximately double the height of the mesa structure is formed over the substrate and the mesa structure. The spacer material layers are formed as, or are replaced with, electrically conductive layers. Portions of the alternating stack are removed from above the mesa structure by a planarization process. Stepped surfaces can be concurrently formed in a first terrace region overlying the mesa structure and in a second terrace region located at an opposite side of a memory array region of the alternating stack. A pair of level shifted stepped surfaces is formed. Contacts to the alternating stack can reach down only to the lowest surface of the pair of level shifted stepped surfaces, and can be shorter than the alternating stack.
Abstract:
After formation of an alternating stack of insulating layers and sacrificial material layers, a memory opening can be formed through the alternating stack, which is subsequently filled with a columnar semiconductor pedestal portion and a memory stack structure. Breakage of the columnar semiconductor pedestal portion under mechanical stress can be avoided by growing a laterally protruding semiconductor portion by selective deposition of a semiconductor material after removal of the sacrificial material layers to form backside recesses. At least an outer portion of the laterally protruding semiconductor portion can be oxidized to form a tubular semiconductor oxide spacer. Electrically conductive layers can be formed in the backside recesses to provide word lines for a three-dimensional memory device.
Abstract:
Conductive structure technology is disclosed. In one example, a conductive structure can include an interconnect and a plurality of conductive layers overlying the interconnect. Each conductive layer can be separated from an adjacent conductive layer by an insulative layer. In addition, the conductive structure can include a contact extending through the plurality of conductive layers to the interconnect. The contact can be electrically coupled to the interconnect and insulated from the plurality of conductive layers. Associated systems and methods are also disclosed.
Abstract:
A method of manufacturing a structure includes forming an alternating stack of insulating layers (42) and spacer material layers (32) over a substrate (9), dividing the alternating stack into a first alternating stack (100, 300) and a second alternating stack (200), the first alternating stack having first stepped surfaces and the second alternating stack having second stepped surfaces, forming at least one memory stack structure through the first alternating stack (100), each of the at least one memory stack structure including charge storage regions, a tunneling dielectric, and a semiconductor channel, replacing portions of the insulating layers in the first alternating stack with electrically conductive layers (46) while leaving intact portions of the insulating layers (42) in the second alternating stack, and forming a contact via structure (84) through the second alternating stack to contact a peripheral semiconductor device under the second stack.
Abstract:
Socket structures that are configured to use area efficiently, and methods for providing socket regions that use area efficiently, are provided. The staircase type contact area or socket region includes dielectric layers between adjacent planar electrodes that partially cover a portion of a planar electrode that does directly underlie an adjacent planar electrode. The portion of a dielectric layer between adjacent planar electrodes can be sloped, such that it extends from an edge of an overlying planar electrode to a point between the edge of an underlying planar electrode and a point corresponding to an edge of the overlying planar electrode.
Abstract:
Three-dimensional memory structures that are configured to use area efficiently, and methods for providing three-dimensional memory structures that use area efficiently are provided. The vertical memory structure can include a number of bit line bits that is greater than a number of word line bits. In addition, the ratio of bit line bits to word line bits can be equal to a ratio of a first side a memory cell included in a memory array of the memory structure to a dimension of a second side of the memory cell.
Abstract:
Resistance of a semiconductor channel in three-dimensional memory stack structures can be reduced by forming a metal-semiconductor alloy region between a vertical semiconductor channel and a horizontal semiconductor channel located within a substrate. The metal-semiconductor alloy region can be formed by recessing a portion of the semiconductor material layer in the semiconductor substrate underneath a memory opening after formation of a memory film, selectively depositing a metallic material in the recess region, depositing a vertical semiconductor channel, and reacting the deposited metallic material with an adjacent portion of the semiconductor material layer and the vertical semiconductor channel. A sacrificial dielectric material layer can be formed on the memory film prior to the selective deposition of the metallic material. The vertical semiconductor channel can be formed in a single deposition process, thereby eliminating any interface therein and minimizing the resistance of the vertical semiconductor channel.
Abstract:
A three-dimensional NAND device includes a first set of word line contacts in contact with a contact portion of respective odd numbered word lines in a first stepped word line contact region, and a second set of word line contacts in contact with a contact portion of respective even numbered word lines in a second stepped word line contact region. The even numbered word lines in the first word line contact region do not contact a word line contact while the odd numbered word lines in the second word line contact region do not contact a word line contact.
Abstract:
A first stack of alternating layers including first electrically conductive layers and first electrically insulating layers is formed with first stepped surfaces and a first dielectric material portion thereupon. Dielectric pillar structures including a dielectric metal oxide can be formed through the first stepped surfaces. Lower memory openings can be formed, and filled with a disposable material or a lower memory opening structure including a lower semiconductor channel and a doped semiconductor region. At least one dielectric material layer and a second stack of alternating layers including second electrically conductive layers and second electrically insulating layers can be sequentially formed. Upper memory openings can be formed through the second stack and the at least one dielectric material layer. A memory film and a semiconductor channel can be formed after removal of the disposable material, or an upper semiconductor channel can be formed on the doped semiconductor region.