Abstract:
Abstract of the Disclosure Provided herein are compositions that include a dendrimer to which a drug and a binding peptide are conjugated. The binding peptide may be configured to bind to a receptor that is overexpressed by a diseased cell, such as a cancer cell. The compositions may include a hydrogel in which the dendrimer-drug conjugate is dispersed. Methods of drug delivery and kits also are provided.
Abstract:
Methods for treating, adhering, or sealing biological tissue are provided. The methods include combining solutions containing a polymer component and a dendrimer component capable of reacting with each other, and at least one of the components includes a substituent capable of photoreversible dimerization that can be reversibly dimerized. Drug delivery compositions and kits containing these two components also are provided.
Abstract:
A method includes determining, by a computer processor coupled to memory, data associated with a patient, the data comprising a heart rate value, a peak velocity through aortic valve value, and a stroke volume value; generating a flow waveform for the patient using the data; determining a set of candidate vascular impedance (VI) values for the patient based at least in part on the flow waveform, the set of candidate VI values comprising first and second VI values; determining a first pressure waveform using the flow waveform and the first VI value; determining a second pressure waveform using the flow waveform and the second VI value; determining a blood pressure value for the patient; determining that the first pressure waveform is a closer match to the blood pressure value than the second pressure waveform; and determining that the patient has a vascular impedance of the first VI value.
Abstract:
The systems and methods described herein determine metrics of cardiac performance via a mechanical circulatory support device and use the cardiac performance to calibrate, control and deliver mechanical circulatory support for the heart. The systems include a controller configured to operate the device, receive inputs indicative of device operating conditions and hemodynamic parameters, and determine vascular performance, including vascular resistance and compliance, and native cardiac output. The systems and methods operate by using the mechanical circulatory support device (e.g., a heart pump) to introduce controlled perturbations of the vascular system and, in response, determine heart parameters such as stroke volume, vascular resistance and compliance, left ventricular end diastolic pressure, and ultimately determine native cardiac output.
Abstract:
Methods, compositions, kits, and drug delivery devices are provided for treating, adhering, or sealing biological tissues. The methods include combining a first solution that includes an oligomer/polymer component and a second solution that includes a dendrimer component, and at least one of the oligomer/polymer component and dendrimer component includes at least one substituent that is capable of photoreversible dimerization. The reversible dimerization of the substituent may allow for the reversible dimerization and/or polymerization of one or more components. The substituent that is capable of photoreversible dimerization may be active by the application of light, such as UV light.
Abstract:
Drug-eluting devices and methods for the treatment of tumors of the pancreas, biliary system, gallbladder, liver, small bowel, or colon, are provided. Methods include deploying a drug-eluting device having a film which includes a mixture of a degradable polymer and a chemotherapeutic drug, wherein the film has a thickness from about 2 µm to about 1000 µm, into a tissue site and releasing a therapeutically effective amount of the chemotherapeutic drug from the film to treat the tumor, wherein the release of the therapeutically effective amount of the drug from the film is controlled by in vivo degradation of the polymer at the tissue site.