摘要:
A Vertical Multiple Implanted Silicon Carbide Power MOSFET (VMIMOSFET) includes a first conductivity semiconductor substrate, a first conductivity semiconductor drift layer on the top of the substrate, a multitude of second conductivity layers implanted in the drift layer. The body layer is where the channel is formed. A first conductivity source layer is interspaced appropriately inside of the second conductivity layers. A gate oxide of a certain thickness and another oxide of a different thickness, a greater thickness than the gate oxide, placed in between the body layers but in such way that its shape does not distort the gate oxide in the channel. A charge compensated body layer of the second conductivity formed outside of the channel region and only at specific high electric field locations in the structure. The device and the manufacturing method deliver a power SiC MOSFET with increased frequency of operation and reduced switching losses.
摘要:
High voltage semiconductor devices with high-voltage termination structures (100, 200, 300) are constructed on lightly doped substrates (12). Lightly doped p-type substrates (12) are particularly prone to depletion and inversion from positive charges, degrading the ability of associated termination structures to block high voltages. To improve the efficiency and stability of termination structures, second termination regions (23, 223, 323) of the same dopant type as the substrate (12), more heavily doped than the substrate (12) but more lightly doped than first termination regions (22), are positioned adjoining the first termination regions (22). The second termination regions raise the field threshold voltage where the surface is vulnerable and render the termination structure (110) substantially insensitive to positive charges at the surface. The use of higher dopant concentration in the gap region without causing premature avalanche is facilitated by only creating second termination regions (323) for regions lacking field plate (10) protection.
摘要:
A SiC Power Semiconductor device of the Field Effect Type (MOSFET, IGBT or the like) with "muted" channel conduction in some cells and with negative temperature coefficient of channel mobility, allowing an optimized thermal management of the cells for increased Safe Operating Area is described. Controlling the location of the Zero Temperature Crossover Point (ZTCP) in relationship to the drain current is achieved by the partition between the "active" and "inactive" ("muted") channels and by adjusting the mobility of the carriers in the channel for the temperature range of interest. The "Thermal management" is realized by surrounding the "active" cells/fingers with "inactive" ones and the "negative" feedback of the drain/collector current due to local increase of the gate bias is achieved by implementing in-situ "ballast" resistors inside of each source contact, among other possibilities.
摘要:
A merged PN/Schottky diode is provided having a substrate of a first conductivity type and a grid of doped wells of the second conductivity type embedded in the substrate. A Schottky barrier metal layer makes a Schottky barrier contact with the surface of the substrate above the grid. Selected embedded wells in the grid may contact the Schottky barrier metal layer, while most embedded wells do not. The diode forward voltage drop is reduced for the same diode area with reverse blocking benefits similar to a conventional JBS structure.
摘要:
A high power, high current Unidirectional Transient Voltage Suppressor, formed on SiC starting material is disclosed. The device is structured to avalanche uniformly across the entire central part (active area) such that very high currents can flow while the device is reversely biased. Forcing the device to avalanche uniformly across designated areas is achieved in different ways but consistently in concept, by creating high electric fields where the device is supposed to avalanche (namely the active area) and by relaxing the electric field across the edge of the structure (namely in the termination), which in all embodiments meets the conditions for an increased reliability under harsh environments.
摘要:
A SIC VDMOS transistor is integrated with a SiC SBD, in a seamless way, without any increase of the device area. The SiC SBD is integrated in the active area of the VDMOS by splitting the P- Wells, such that the lightly doped drift region extents all the way to the surface of semiconductor, and by trenching through the source of the VDMOS and partially through the P- Wells to reach the peak of the P-type doping in the P-Well regions. The source of the VDMOS is contacted from the top surface and from the vertical sidewalls of the trenched source and the forward voltage of the Schottky Barrier diode is tailored by using two different metals for the ohmic contact on the source and for the SBD.
摘要翻译:SIC VDMOS晶体管与SiC SBD以无缝的方式集成在一起,而不会增加器件面积。 SiC SBD通过分裂P阱而集成在VDMOS的有源区域中,使得轻掺杂漂移区域一直延伸到半导体的表面,并且通过挖沟通过VDMOS的源并部分地通过P - 在P阱区域达到P型掺杂的峰值。 VDMOS的源极从沟槽源的顶表面和垂直侧壁接触,肖特基势垒二极管的正向电压通过使用两种不同的金属来调节源极和SBD上的欧姆接触。