A SELF-CALIBRATED MINIATURIZED PRESSURE SENSOR
    1.
    发明申请
    A SELF-CALIBRATED MINIATURIZED PRESSURE SENSOR 审中-公开
    自校准微型压力传感器

    公开(公告)号:WO2015170957A1

    公开(公告)日:2015-11-12

    申请号:PCT/MY2015/000022

    申请日:2015-04-22

    CPC classification number: G01L27/002 G01L9/0075

    Abstract: The present invention relates to pressure sensor and more particularly self-calibrated miniaturized pressure sensor designed for monitoring applications in automotive, industrial, medical and consumer products. One of the advantages of the present invention is able to detect self-calibration of the pressure sensor at both the initial state of the device or during operation. Another advantage of the present invention is that the self-calibrated miniaturized pressure sensor of the present invention enables the user to know the exact condition of the deformed diaphragm structure to ensure that the measured results are representative of the actual applied external pressure instead of the internal mechanical failure of the diaphragm structure. The present invention further provides a considerable reduction of materials with even greater efficiency and economically during operation.

    Abstract translation: 本发明涉及压力传感器,特别是自校准的小型化压力传感器,用于监测汽车,工业,医疗和消费产品中的应用。 本发明的优点之一是能够在设备的初始状态或操作期间检测压力传感器的自校准。 本发明的另一个优点是,本发明的自校准的小型压力传感器使得用户能够知道变形的隔膜结构的确切状况,以确保测量结果代表实际施加的外部压力而不是内部的 隔膜结构的机械故障。 本发明进一步提供了在操作期间具有更高效率和经济性的材料的显着减少。

    A METHOD OF FORMING A DEVICE WITH NANOSTRUCTURES
    2.
    发明申请
    A METHOD OF FORMING A DEVICE WITH NANOSTRUCTURES 审中-公开
    一种形成具有纳米结构的器件的方法

    公开(公告)号:WO2013089556A1

    公开(公告)日:2013-06-20

    申请号:PCT/MY2012/000186

    申请日:2012-06-29

    Abstract: The present invention generally relates to a method of forming nanotubes or nanowires device in an opening, more particularly the present invention relates to method of forming device structures using random nanotubes or nanowires formations. The device with nanostructrures as formed according to the method described in the present invention comprises first, a substrate (11). Then, at least a conductive layer (21), at least a dielectric layer (22), and at least a catalyst layer (23) deposited on the substrate (11) for structuring the device, wherein the catalyst layer (23) is sandwiched between conductive layers (21) of two devices of the same type. An opening (24) is etched through said layers for, after which a plurality of nanostructures (25) is formed, bridging conductive layers within one of the two devices.

    Abstract translation: 本发明一般涉及一种在开口中形成纳米管或纳米线装置的方法,更具体地说,本发明涉及使用无规纳米管或纳米线形成形成器件结构的方法。 具有根据本发明所述方法形成的纳米结构的器件首先包括衬底(11)。 然后,至少导电层(21),至少介电层(22)和沉积在基板(11)上的至少一催化剂层(23),用于构造该器件,其中催化剂层(23)夹在 在相同类型的两个装置的导电层(21)之间。 通过所述层蚀刻开口(24),之后形成多个纳米结构(25),在两个器件之一内桥接导电层。

    A METHOD OF FORMING GRAPHENE NANOMESH
    3.
    发明申请

    公开(公告)号:WO2021133159A1

    公开(公告)日:2021-07-01

    申请号:PCT/MY2020/050133

    申请日:2020-11-05

    Applicant: MIMOS BERHAD

    Abstract: The present invention relates to a method (100) of forming graphene nanomesh comprising the steps of providing an oxide layer on top of the substrate (101) as an insulating layer, depositing a metal seed layer on a substrate (102) via physical vapor deposition technique; and growing a graphene layer on the metal seed layer (103) via chemical vapor deposition, whereby said graphene layer grows into the graphene nanomesh on the metal seed layer. The method (100) further comprising a step of transferring the graphene nanomesh to another substrate (104).

    APPARATUS AND METHOD FOR ELECTRICALLY TESTING A GAS SENSING ELEMENT
    4.
    发明申请
    APPARATUS AND METHOD FOR ELECTRICALLY TESTING A GAS SENSING ELEMENT 审中-公开
    用于电气测试气体传感元件的装置和方法

    公开(公告)号:WO2013048232A1

    公开(公告)日:2013-04-04

    申请号:PCT/MY2012/000194

    申请日:2012-06-29

    CPC classification number: G01N27/20 H01L22/14 H01L2924/0002 H01L2924/00

    Abstract: Apparatus for characterizing a sensing element which comprises of at least one gas chamber (301), at least one gas connection means, at least two electrical connection means (306), at least one heater (309), at least one sealing means (310) and at least one locking means. The characterization process of said sensing element can be carried out at wafer level through resistance measurement, whereby said sensing element can be a blanket sensing element before proceed to fabricating of full sensor device. The connection means comprises at least one spring in connection with an electrode for improved contacting of the workpiece.

    Abstract translation: 用于表征感测元件的装置,其包括至少一个气室(301),至少一个气体连接装置,至少两个电连接装置(306),至少一个加热器(309),至少一个密封装置 )和至少一个锁定装置。 所述感测元件的表征过程可以通过电阻测量在晶片级进行,由此在继续制造完整的传感器装置之前,所述感测元件可以是橡皮圈感测元件。 连接装置包括至少一个与电极连接的弹簧,用于改善工件的接触。

    AN INTEGRATED PACKAGED ENVIRONMENTAL SENSOR AND ROIC AND A METHOD OF FABRICATING THE SAME
    5.
    发明申请
    AN INTEGRATED PACKAGED ENVIRONMENTAL SENSOR AND ROIC AND A METHOD OF FABRICATING THE SAME 审中-公开
    一体化包装环境传感器和ROIC及其制造方法

    公开(公告)号:WO2011053110A2

    公开(公告)日:2011-05-05

    申请号:PCT/MY2010/000182

    申请日:2010-09-30

    CPC classification number: G01D11/245 G06K19/0717

    Abstract: An integrated packaged microchip (100) including at least one environmental sensor (104) and at least one Read-Out Integrated Chip (ROIC) (102) is provided, characterized in that, the integrated packaged microchip (100) further includes an etched opening (108) of the environmental sensor (104) exposed to a sensable environment, using at least one layer of glass wafer (101,106) and at least one layer of silicon wafer (107).

    Abstract translation: 提供包括至少一个环境传感器(104)和至少一个读出集成芯片(ROIC)(102)的集成封装微芯片(100),其特征在于,所述集成封装微芯片(100)还包括蚀刻开口 使用至少一层玻璃晶片(101,106)和至少一层硅晶片(107)来暴露于可感知环境的环境传感器(104)(108)。

    METHOD OF FORMING GRAPHENE BUMP STRUCTURE
    6.
    发明申请

    公开(公告)号:WO2020139077A1

    公开(公告)日:2020-07-02

    申请号:PCT/MY2019/050132

    申请日:2019-12-26

    Applicant: MIMOS BERHAD

    Abstract: The present invention relates to a method (200) of forming graphene bump structure (100) comprising the steps of providing (210) a substrate (10); etching (220) the substrate (10) to form a cavity structure (20); growing (230) a silicon dioxide layer (30) on top of the substrate (10); depositing (240) a thin metal catalyst layer (40) on top of the substrate (30); synthesizing (250) graphene layer (50) on top of the metal catalyst layer (40); depositing (260) an epoxy-based photoresist (60); removing (270) the thin metal catalyst layer (40), the silicon dioxide layer (30) and the epoxy-based photoresist (60) from the substrate (10); and patterning (280) the epoxy-based photoresist (60) to remove from the cavity structure (20) to form the graphene bump structure (100).

    A MICROFLUIDIC DEVICE
    7.
    发明申请
    A MICROFLUIDIC DEVICE 审中-公开
    微流体装置

    公开(公告)号:WO2014003535A1

    公开(公告)日:2014-01-03

    申请号:PCT/MY2013/000107

    申请日:2013-06-14

    Applicant: MIMOS BERHAD

    Abstract: An improve microfluidic device (10) is configured to improve in microyalve system, the microfluidic device is in the form of rotary compact disc, comprising four substrate which a first substrate (20) having at least main reservoir (22) and secondary reservoir (24) containing working fluid (26), a second substrate (30) with at least a microvalve in the formed of diaphragm (32) structure which is actuated by the working fluid (26), a third substrate (40) with at least one reservoir (46) for fluid sample (44) and a microfluidic structure (42) as fluid sample pathway and a fourth substrate (50) with at least one microchannel (54) as an air flow passage. The microfluidic device has improved the valve system by applying a microchannel (54) that has at least two vent holes (52) and constriction feature (56) to allow and accelerate air from external environment to flow and generate pressure difference in order to cause the movement of said working fluid (26) for the working fluid to move the passive microvalve.

    Abstract translation: 改进的微流体装置(10)被配置为在微观系统中改进,微流体装置是旋转光盘的形式,包括四个基板,第一基板(20)至少具有主储存器(22)和第二储存器(24) )包含工作流体(26)的第二基板(30),具有由工作流体(26)致动的隔膜(32)结构形成的至少一个微型阀的第二基板(30),具有至少一个储存器 (46)和作为流体样品通道的微流体结构(42)和具有至少一个微通道(54)作为空气流动通道的第四基板(50)。 微流体装置通过施加具有至少两个通气孔(52)和收缩特征(56)的微通道(54)来改善阀系统,以允许和加速来自外部环境的空气流动并产生压力差,从而使 用于工作流体的所述工作流体(26)的移动以移动被动微型阀。

    MICRO-HOTPLATE BASED GAS SENSOR
    8.
    发明申请
    MICRO-HOTPLATE BASED GAS SENSOR 审中-公开
    基于微型HOTPLATE的气体传感器

    公开(公告)号:WO2012078023A1

    公开(公告)日:2012-06-14

    申请号:PCT/MY2011/000093

    申请日:2011-06-14

    CPC classification number: G01N27/12 G01N27/18

    Abstract: The present invention provides a chemo-resistive gas sensor in which consists of two chemo-resistive sensor elements (16, 36) placed on both sides of a micro-hotplate array (26). It is capable of providing lower power consumption compared to existing one-side sensing membrane gas sensor. An embodiment of the invention has the two sensor elements to be of same material to increase the sensitivity of the device. Another embodiment of the invention has two sensor elements of different material to allow different gas to be monitored. The proposed two membranes may be arranged to provide multiple gas solution for remote application and device miniaturization.

    Abstract translation: 本发明提供了一种化学电阻气体传感器,其中包括放置在微电热器阵列(26)两侧的两个化学电阻传感器元件(16,36)。 与现有的单侧感应膜式气体传感器相比,它能够提供更低的功耗。 本发明的一个实施例具有两个传感器元件以相同的材料以增加装置的灵敏度。 本发明的另一个实施例具有不同材料的两个传感器元件,以允许监测不同的气体。 所提出的两个膜可以被布置成提供用于远程应用和装置小型化的多种气体解决方案。

    A MICROFLUIDIC CHANNEL AND METHODS OF REMOVING BUBBLES FROM FLUID IN THE MICROFLUIDIC CHANNEL
    9.
    发明申请
    A MICROFLUIDIC CHANNEL AND METHODS OF REMOVING BUBBLES FROM FLUID IN THE MICROFLUIDIC CHANNEL 审中-公开
    在微流通道中从流体中除去泡沫的微流通道和方法

    公开(公告)号:WO2012064172A1

    公开(公告)日:2012-05-18

    申请号:PCT/MY2011/000083

    申请日:2011-06-07

    Abstract: The invention discloses an apparatus and methods of puncturing bubbles from fluid in a microfluidic channel (104). The primary sharp protuberance (103) punctures the larger bubbles. The air vent (102) traps and removes the bubbles created after the larger bubbles have been broken by primary sharp protuberance (103). The secondary sharp protuberance (106) punctures the escaped bubbles which were not broken by the primary sharp protuberance (103) or not removed by air vent (102). Various sharp protuberances array can be integrated inside the microfluidic channel (104) to puncture the bubbles in the fluid flow path.

    Abstract translation: 本发明公开了一种在微流体通道(104)中从流体中刺穿气泡的装置和方法。 主要的尖锐突起(103)刺穿较大的气泡。 通气孔(102)捕获和去除在较大气泡已经被初级尖锐突起(103)破裂之后产生的气泡。 第二尖锐突起(106)刺穿未被主锐利突起(103)打破或未被通气孔(102)去除的逸出的气泡。 可以在微流体通道(104)内集成各种尖锐的突起阵列以刺穿流体流动路径中的气泡。

    METHOD OF FABRICATING NANO-RESISTORS
    10.
    发明申请
    METHOD OF FABRICATING NANO-RESISTORS 审中-公开
    制造纳米电阻器的方法

    公开(公告)号:WO2011096790A2

    公开(公告)日:2011-08-11

    申请号:PCT/MY2010/000317

    申请日:2010-12-13

    CPC classification number: H01L27/0802

    Abstract: The present invention describes a novel method of fabricating nano-resistors (22) which allows full integration with standard CMOS fabrication process. The resistor comprises long and thin nano-structures as resistive element. It is formed by conductive nano-spacers (18B) on insulating layer. An embodiment of such structure is polysilicon nano-structures doped or implanted with n-type or p-type ions (20) to improve material conductance. The electrical properties of the device will change with respect to the dimension of these nano-structures. Resistors with polysilicon nano-structures down to 10 nm can be produced with resulting measured resistance in the MOhm scale.

    Abstract translation: 本发明描述了制造纳米电阻器(22)的新颖方法,其允许与标准CMOS制造工艺完全集成。 电阻器包括长而薄的纳米结构作为电阻元件。 它由绝缘层上的导电纳米间隔物(18B)形成。 这种结构的一个实施例是掺杂或注入n型或p型离子(20)以改善材料电导的多晶硅纳米结构。 器件的电性能将随着这些纳米结构的尺寸而改变。 具有低至10nm多晶硅纳米结构的电阻可以在MOhm标度下产生所测量的电阻。

Patent Agency Ranking