Abstract:
A scaffold graft used for treatment of treatment of arterial perforations and/or condition of aneurysm. The scaffold may be made of a biodegradable material. The scaffold is coated with a biodegradable layer of polymer on an outer surface. The biodegradable scaffold is made of poly- L-lactic acid (PLLA). The biodegradable graft may be made of poly-L-lactide-co-caprolactone (PLCL), polycaprolactone (PCL), poly-dl-lactic acid, (PDLLA), polyglycerol sebacate (PGS), Poly L- lactide (PLLA), Poly(glycolic acid) (PGA), Poly L-lactide co-glycolic acid (PLGA) or a mixture thereof. Additionally, the scaffold graft is coated with an antiproliferative drug formulation.
Abstract:
Die Erfindung betrifft ein biokompatibles Formteil zur Unterstützung der Knochenneubildung, insbesondere der Neubildung eines Kieferknochens oder Kieferknochenabschnittes in einem Säugetier, bevorzugt einem Menschen, wobei das Formteil für das Auflegen auf dem Kieferknochen geeignet und als Vollkörper ausgebildet ist, eine Zusammensetzung zur Herstellung eines biokompatiblen Formteils, ein Verfahren zur Herstellung eines biokompatiblen Formteils, eine Verwendung eines biokompatiblen Formteils sowie ein Kit umfassend mehrere Formteile.
Abstract:
The method comprises the step of forming pipes (12) by clamping a bag between shells (13, 14) and by injecting an inflating agent via an inflating connector. The circuit comprises a bag (126) and a press (10) comprising two shells (13, 14) clamping said bag in a state in which pipes (12) are formed between the films (25, 26) of the bag.
Abstract:
Die Erfindung betrifft ein Verfahren und eine Anordnung zum Sterilisieren, insbesondere zum Sterilisieren eines Adsorbers, der ein mit einem Adsorbens zu befüllendes Adsorbergehäuse aufweist. Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung beruhen darauf, dass nicht das mit dem Adsorbens gefüllte Adsorbergehäuse (1A), sondern das Adsorbens in einem separaten Behältnis (2) sterilisiert wird, das derart bemessen ist, dass sich das Adsorbens in dem Behältnis in einer dünnen Schicht verteilt. Dabei bildet das Behätnis (2) zum Sterilsieren des Adsorbens mit dem Adsorbergehäuse (1A) ein geschlossenes System, so dass sich das Adsorbens in das Adsorbergehäuse überführen lässt, ohne dass eine aseptische Umgebung erfoderlich ist. Das Behältnis (2) zur Aufnahme des Adsorbens ist vorzugsweise ein Beutel (2), in dem sich das Adsorbens in einer dünnen Schicht verteilt, wenn der Beutel auf einer Ebene flach aufliegt. Da sich das Adsorbens in dem Beutel (2) in einer dünnen Schicht verteilt, ist zur Sterilisation eine nur verhältnismäßig geringe Strahlungsdosis erforderlich, die das Asorbens nicht schädigen kann. Der Beutel (2) wird mit einer energiereichen, insbesondere ionisierenden Strahlung bestrahlt. Anschließend wird das Adsorbens aus dem Beutel (2) in das Adsorbergehäuse (1A) überführt. Beim Überführen des Adsorbens in das Adsorbergehäuse wird die in dem Adsorbergehäuse befindliche Luft und/oder überschüssige Flüssigkeit aus dem Adsorbergehäuse vorzugsweise in einen oder mehrere Leerbeutel abgeführt.
Abstract:
Methods are disclosed for the sterilization of functional biological materials, and for their preservation for shelf storage at uncontrolled temperatures. Biological contaminants are significantly reduced in titer or eliminated while maintaining preservation of functional integrity of sterilized and stabilized products. The sterilized and stabilized functional biological material can be stored at room temperature, thereby making it much more available and easier to use versus, lyophilized, conventional frozen or cold stored biologies. The present invention is further directed to inactivation of metalloenzymes, which are often degradative enzymes in biological systems. Reduction or elimination of the degradative function can be achieved by exposure to ionizing radiation, chemical agents or processes that inactivate the metalloenzymes. Inactivation of metalloenzymes enhances the stability of functional biological materials at ambient temperature.
Abstract:
A method for the preparation of biologically active materials is presented. The invention involves taking a base material such as allografts, xenografts, polymers, metals, and ceramics and combining it with a biologically active agent, such as proteins, cytokines, growth factors, and enzymes after which it is irradiated with ionizing radiation to sterilize and stabilize the material. The resulting biologically active material may then be stored at ambient temperature while maintaining its biological activity and the structural integrity of the base material. The invention is particularly useful for eliciting desired biological responses in human and animal medicine, and in certain industrial applications.
Abstract:
A mixing vessel contains a septum, dividing a first chamber from a second chamber. By relatively moving the septum with respect to the ends of the vessel, and flowing a fluid through the septum, the fluid is treated as it moves from the first chamber to the second chamber. The particular configuration of the septum allows for treatments such as mixing, reacting, heating, and cooling, as well as filtering of the fluid.
Abstract:
A method for the preparation of antimicrobially active materials is presented. The invention involves taking a base material such as allografts, xenografts, polymers, metals, and ceramics and combining it with an antimicrobially active agent, such as antibiotics, antibacterials, antifungals, antivirals, disinfectants, and polypeptides, after which it is irradiated with ionizing radiation to sterilize and stabilize the combined material. The resulting antimicrobially active material may then be stored at ambient temperature while maintaining its antimicrobial activity and the structural integrity of the base material. The invention is particularly useful for both preventing and treating a variety of infections and for increased safety in reconstructive procedures.
Abstract:
The invention provides a method for the sterilization of a biological preparation comprising desired viable biological entities. The method comprises irradiating a dried (e.g. freeze-dried) biological preparation with ionizing or UV radiation at an intensity and for a duration sufficient to reduce the amount or activity of living-matter contaminants in the biological preparation, the intensity and duration selected such that at least part of the desired biological entities in the sample remains viable. The method of the invention is particularly suitable for the reduction of the amount or activity of contaminants such as bacteria or viruses from biological preparations comprising red blood cells or platelets.
Abstract:
The present invention relates to methods for sterilization of dispersions of one or more nanoparticulate active agents via gamma irradiation and to the obtainable pharmaceutical compositions.