Abstract:
A sulfidic complexing agent is disclosed that includes a suspension or a solution formed by a reaction between a water-soluble metal compound and a water-soluble sulfidic compound. The sulfidic complexing agent has a pH of from about 5 to about 11 and a molar ratio of metal to sulfur of from about 0.1 to about 1,000. The sulfidic complexing agent is useful for removing elemental mercury from a hydrocarbon fluid by contacting the hydrocarbon fluid with the sulfidic complexing agent. The molar ratio of sulfur in the sulfidic complexing agent to mercury in the hydrocarbon fluid is from about 50 to about 2,500. Also disclosed is a method for concurrently transporting and removing a trace amount of volatile mercury in a CO 2 -containing natural gas stream extracted from a subterranean formation. The natural gas stream is transported in a pipeline into which the sulfidic complexing agent is injected. Also disclosed is a method for capturing gas phase elemental mercury from a gas stream in the overhead section of a crude oil distillation unit by contacting the gas stream with the sulfidic complexing agent in the overhead section of the distillation unit to form a treated gas stream.
Abstract:
Provided is a method for producing metal chalcogenide nanomaterials, comprising the steps of forming an aqueous solution of a chalcogen precursor, a reducing agent and a metal salt; mixing the aqueous solution for a duration of time at a reaction temperature of between about 10 ℃ to about 40 ℃, inclusively; and separating the produced metal chalcogenide nanomaterials from the aqueous solution. Also provided is a method of converting metal chalcogenide nanoparticles into metal chalcogenide nanotubes or nanosheets, comprising the steps of forming an aqueous mixture of a chalcogen precursor, a reducing agent and the metal chalcogenide nanoparticles in water; and forming the nanotubes or nanosheets by stirring or not stirring the aqueous mixture, respectively.
Abstract:
Disclosed are chalcogenide nanomaterials, preferably metal chalcogenide nanomaterials, for example, copper, lead and/or silver chalcogenide nanomaterials. Also provided is a method or process of synthesizing or preparing a chalcogenide nanomaterial, preferably a metal chalcogenide nanomaterial. In an example, a wet-chemical method is used to prepare metal chalcogenide nanomaterials, preferably in a solvent and in the presence of one or more organic ligands. Another example method involves producing metal chalcogenide nanomaterial and includes the steps of forming a mixture of a metal precursor, a chalcogen-based ligand, a solvent and a chalcogen precursor, heating the mixture at a reaction temperature for a duration of reaction time, and separating a produced metal chalcogenide nanomaterial.
Abstract:
This invention relates to a method for exfoliating inorganic layered compounds to form two- dimensional (2D) inorganic compounds. The exfoliation is carried out in aqueous media in the present of polycyclic aromatic compounds. The invention also relates to aqueous suspensions of two-dimensional compounds which arise from the exfoliation method. The invention further relates to methods of forming thin films of two-dimensional compounds from suspensions and to devices comprising thin films of two-dimensional (2D) inorganic compounds.
Abstract:
This invention relates to a method for exfoliating inorganic layered compounds to form two- dimensional (2D) inorganic compounds. The exfoliation is carried out in aqueous media in the present of polycyclic aromatic compounds. The invention also relates to aqueous suspensions of two-dimensional compounds which arise from the exfoliation method. The invention further relates to methods of forming thin films of two-dimensional compounds from suspensions and to devices comprising thin films of two-dimensional (2D) inorganic compounds.
Abstract:
The present invention provides a process for obtaining fullerene-like metal chalcogenide nanoparticles, comprising feeding a metal precursor (INi) selected from metal halide, metal carbonyl, organo-metallic compound and metal oxyhalide vapor into a reaction chamber (12) towards a reaction zone to interact with a flow of at least one chalcogen material (IN2) in gas phase, the temperature conditions in said reaction zone being such to enable the formation of the fullerene-like metal chalcogenide nanoparticles product. The present invention further provides novel IF metal chalcogenides nanoparticles with spherical shape and optionally having a very small or no hollow core and also exhibiting excellent tribological behavior. The present invention further provides an apparatus for preparing various IF nanostructures.
Abstract:
L'invention concerne un procédé de pyrolyse de spray, caractérisé en ce qu'il est appliqué à la synthèse de nanoparticules à structure fermée de chalcogénures de métaux de structure cristallographique lamellaire, de 5 formule générale M a X b , dans laquelle M représente un métal et X un chalcogène, a et b représentant les proportions respectives de métal et de chalcogène, et qu'il comprend une pyrolyse d'un aérosol liquide obtenu à partir d'une solution d'au moins un précurseur d'un métal (M) et d'un 10 chalcogène (X), ou d'au moins un précurseur dudit métal (M) et d'au moins un précurseur dudit chalcogène (X), dissous dans un solvant, ladite solution étant pulvérisée en fines gouttelettes en suspension dans un gaz vecteur.
Abstract:
A method of preparing metal chalcogenide particles. The method comprising the step of reacting an amine and metal complex precursors. The metal complex precursors comprising a chalcogenide and an electrophilic group. The reaction forming metal chalcogenide particles substantially free of the electrophilic group.
Abstract:
The present invention relates to a method of preparing particles of a defined size and morphology, using a reaction of reactants, wherein the reaction is carried out in the presence of rotational forces and wherein the reactants are separated from each other by means of a contactor. The present method is suitable for preparing particles having a particle size ranging from 10-3000 nm.
Abstract:
The invention relates to a process for the synthesis of nanotubes of transition metal dichalcogenides by the method of chemical transport with the addition of fullereness. According to this process nanotubes of transitioln metal dichalcogenides are obtained. Teh nanotubes are hexagonally arranged in form of needle-like bundles. The process comprises the method of chemical transport, in which besides halogens (iodine and/or bromine) also fullereness are used at conditions, in which the fullereness exist in the vapour phase. The chemical transport reaction occurs in a quartz ampoule, sealed at an pressure lower than 5 x 10 Torr. The temperature in the hot part of the ampoule is higher than 830 DEG C.