Abstract:
The invention relates to a coloured zirconia ceramic dental mill blank having fluorescing properties, processes of production such a mill blank and uses thereof, in particular for producing zirconia ceramic dental restorations. The dental mill blank having a shape allowing the dental mill blank to be attached or fixed to a machining device, the dental mill blank comprising a porous zirconia material, the porous zirconia material comprising the oxides Zr oxide calculated as Zr02: from about 80 to about 97 wt.-%, Al oxide calculated as A1203: from about 0 to about 0.15 wt.-%, Y oxide calculated as Y203: from about 1 to about 10 wt- %, Bi oxide calculated as Bi203: from about 0.01 to about 0,20 wt- %, Tb oxide calculated as Tb203: from about 0.01 to about 0.8 wt.-%, and optionally one or two of the following oxides: Er oxide calculated as Er203: from about 0.01 to about 3.0 wt.-%, Mn oxide calculated as Mn02: from about 0.0001 to about 0.08 wt.-%, the porous zirconia material not comprising Fe oxide calculated as Fe203 in an amount of more than about 0.01 wt.-%, wt.-% with respect to the weight of the porous zirconia material.
Abstract translation:本发明涉及一种具有荧光特性的着色氧化锆陶瓷牙科磨机坯料,生产这种研磨坯料的方法及其用途,特别是用于生产氧化锆陶瓷牙科修复体。 将具有允许牙科磨料坯料的形状附着或固定在加工装置上的牙科研磨坯料,所述牙科磨料坯料包含多孔氧化锆材料,所述多孔氧化锆材料包含以ZrO 2计算的氧化物Zr氧化物:约80至约 97重量%,按Al2O3计算的Al氧化物:约0至约0.15重量%,以Y 2 O 3计算的Y氧化物:约1至约10重量%,按Bi 2 O 3计算的Bi氧化物:约0.01至约 0,20重量%,Tb 2 O 3计算的Tb氧化物:约0.01至约0.8重量%,以及任选的一种或两种以下氧化物:以Er 2 O 3计算的Er氧化物:约0.01至约3.0重量% ,以MnO 2计算的Mn氧化物:约0.0001至约0.08重量%,不含Fe氧化物的多孔氧化锆材料以Fe 2 O 3计,其量相对于所述氧化物的量大于约0.01重量% 多孔氧化锆材料的重量。
Abstract:
La presente invención trata de un gres porcelánico que comprende cristales de silicatos seleccionados de la lista que comprende silicatos de magnesio, silicatos de hierro o silicatos de magnesio y hierro, donde los cristales están homogéneamente distribuidos y tienen un tamaño medio de de 20nm a 1000nm, preferiblemente de 50 a 500nm. Asimismo esta invención trata del procedimiento de obtención de dichos productos de gres porcelánico.
Abstract:
Disclosed herein is a sintered cobalt ferrite composite material comprising of nano and micron sized powders of cobalt ferrite with high magentostriction. The present invention further discloses preparation of nano and micron sized powders of cobalt ferrite, in particular, the auto combustion process using glycine as fuel for preparing nano sized cobalt ferrite powders.
Abstract:
Pièce en matériau composite à matrice céramique comprenant un renfort fibreux en fibres de carbone ou de céramique, et une matrice séquencée majoritairement en céramique comportant des premières couches de matrice en matériau déviateur de fissure alternant avec des deuxièmes couches de matrice en matériau céramique. Un revêtement d'interphase est interposé entre les fibres et la matrice, le revêtement d'interphase adhérant aux fibres et à la matrice et étant formé d'au moins une séquence constituée d'une première couche élémentaire en carbone éventuellement dopé au bore surmontée d'une deuxième couche élémentaire en céramique, la couche élémentaire externe du revêtement d'interphase étant une couche en céramique dont la surface externe est formée par des grains de céramique dont la taille est comprise essentiellement entre 20 nanomètres et 200 nanomètres, avec présence de grains de taille supérieure à 50 nanomètres conférant à la surface externe une rugosité assurant un accrochage mécanique avec la phase de matrice adjacente.
Abstract:
The invention relates to a method for producing zirconia-reinforced Al2O3 grains (9, 12), comprising at least the following steps: inductively melting a starting mixture (2) to form a eutectic melt made of alumina and zirconia (102); applying the eutectic melt (4) as a thin layer material (6, 12), the thin layer material (6, 12) being quenched (104, 107); removing the thin layer material (12); wherein here abrasive grains (12) can be formed directly (107) or the thin layer material (6) can be classified when it is broken into abrasive grains (9) (105, 106), wherein the grains (9, 12) are polycrystalline without amorphous glass phases as an alumina matrix having zirconia precipitations (22, 22a) and wherein at least some of the zirconia precipitations (22a) formed in the nanoscale range.
Abstract:
The invention relates to a method of manufacturing nanoscale cubic boron nitride and to the nanoscale cubic boron nitride thus obtained. The method according to the invention of manufacturing nanoscale boron nitride of cubic structure is characterized in that it comprises the following steps: a) compression of a pyrolytic boron nitride powder having a structure of the monomodal turbostratic graphite type at a pressure of between 19 and 21 GPa and at room temperature; and b) heating of the powder under a pressure of between 19 and 21 GPa and at a temperature of between 1447°C (1720 K) and 1547°C (1820 K) for less than 2 minutes. The invention is applicable in particular in the field of abrasives.