Abstract:
본 발명은 점착력을 부여하는 점결제, 팽창흑연 및 팽윤성 점토를 포함하고, 상기 팽윤성 점토는 가열에 의해 점토의 층간 거리가 20 ~ 50배 팽창되고 물분자를 포함하는 벌집구조(honeycomb)모양의 층상구조이며 입자 사이즈가 50㎛에서 200㎛사이이고, 상기 팽윤성 점토 100중량부에 대하여 상기 팽창흑연 10~100중량부를 포함하는 경량화된 흡음내화 단열재 및 그 제조방법에 관한 것이다. 본 발명에 의하면, 팽창흑연과 벌집구조의 팽윤성 점토를 이용하므로 흡음성능이 향상되고 단열성, 내화성 및 난연성이 우수하며, 소성 공정을 거치지 않고 제조가 가능하여 공정이 단순하고 생산 단가를 낮출 수 있다.
Abstract:
L'invention porte sur une composition consistant en un mélange d'un ou plusieurs oxydes métalliques de formule MxOyUi, dans laquelle M est un atome métallique choisi parmi le fer, l'aluminium, le titane, le manganèse, le zinc, le cuivre, le zirconium, le nickel et le plomb, O est un atome d'oxygène, et U est une impureté, où x, y, i sont des fractions molaires comprises entre 0 et 1 avec x+y>80%, ladite composition étant sous forme d'une tablette compactée de forme tridimensionnelle ayant une densité apparente supérieure ou égale à 2, une porosité apparente comprise entre 3% et 40%, et une résistance à la rupture diamétrale supérieure ou égale à 250 kPa. L'invention porte également sur un procédé de fabrication d'une tablette compactée à base d'un ou plusieurs oxydes métalliques.
Abstract translation:本发明涉及包含一种或多种具有式M x O y Ui的金属氧化物的混合物的组合物,其中M是选自铁,铝,钛,锰,锌,铜,锆,镍和铅的金属原子,O 是氧原子,U是杂质,x,y和i是0〜1的摩尔分数,x + y> 80%。 所述组合物采用表观密度不低于2,表观孔隙率为3%至40%,直径断裂强度不低于250kPa的三维致密块的形式。 本发明还涉及制造由一种或多种金属氧化物制成的压块的方法。
Abstract:
A ceramic oxide body is disclosed. The ceramic oxide body may include fused cast aluminum oxide powder, fine aluminum oxide powder and titanium oxide powder.
Abstract:
Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.
Abstract:
L'invention a trait à un procédé de préparation d'une solution sol-gel stable précurseur d'une céramique oxyde à base de plomb, de titane, de zirconium, et de lanthanide (s) comprenant successivement les étapes consistant à : a) préparer une solution sol-gel, par mise en contact d'un précurseur moléculaire de plomb, d'un précurseur moléculaire de titane, d'un précurseur moléculaire de zirconium et d'un précurseur moléculaire de lanthanide avec un milieu comprenant un solvant diol et éventuellement un monoalcool aliphatique ; b) mettre au repos la solution obtenue en a) pendant un temps suffisant nécessaire à l'obtention d'une solution présentant une viscosité sensiblement constante ; c) diluer à un taux prédéterminé la solution obtenue en b) avec un solvant diol identique à celui de l'étape a) ou un solvant miscible avec ce solvant. Application à la préparation d'un matériau en céramique oxyde comprenant du plomb, un métal lanthanide, du titane et du zirconium.
Abstract:
Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.
Abstract:
The invention relates to sintered ceramic grains comprising 3-55 wt. % alumina, 40-95 wt. % zirconia and 1-30 wt. % of one or more other inorganic components. The invention further relates to a method for preparing ceramic grains according to the invention, comprising: making a slurry comprising alumina, zirconia; making droplets of the slurry; introducing the droplets in a liquid gelling-reaction medium wherein the droplets are gellified; drying the gellified deformed droplets.
Abstract:
The present invention relates to lightweight high strength microsphere containing ceramic particles having controlled microsphere placement and/or size and microsphere morphology, which produces an improved balance of specific gravity and crush strength such that they can be used in applications such as proppants to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more microsphere containing ceramic particles of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the microsphere containing ceramic particles of the present invention are further disclosed, as well as methods of making the microsphere containing ceramic particles.
Abstract:
In a method of preparing a boron carbide material, boron carbide powder is washed with essentially pure water at an elevated temperature to generate washed boron carbide powder. The washed boron carbide powder is combined with a sintering aid. The mixture of the boron carbide powder and the sintering aid is pressed to form a shaped material, and the shaped material is sintered. A sintered boron carbide material comprises a boron carbide component that includes boron carbide, elemental carbon, and not more than about 0.6 wt% of oxygen on the basis of the total weight of the boron carbide component. The sintered boron carbide material has a density of at least about 99% of the theoretical density. Another sintered boron carbide material comprises a boron carbide component that includes boron carbide, silicon carbide, elemental carbon, and not more than about 0.3 wt% oxygen on the basis of the total weight of the boron carbide component, and has a density of at least about 97% of the theoretical density.
Abstract:
Process for the preparation of quasi-crystalline boehmite comprising the steps of: (a) preparing an aqueous precursor mixture comprising a water-insoluble aluminium source; (b) decreasing the pH of the precursor mixture of step (a) by at least 2 units; (c) increasing the pH of the mixture of step (b) by at least 2 units, and (d) aging the mixture of step (c) under hydrothermal conditions to form a quasi-crystalline boehmite. This process provides for the hydrothermal preparation of quasi-crystalline boehmites with high peptizability. The invention therefore further relates to quasi-crystalline boehmites with a high peptizability, measured as the Z-average submicron particle size. This Z-average submicron particle size preferably is less than 500 nm, more preferably less than 300 nm, even more preferably less than 200 nm, and most preferably less than 100 nm.