Abstract:
Methods for making ceramic articles, and methods for reducing extrusion pressure during processes of making ceramic articles, are disclosed. The methods include mixing a ceramic batch composition comprising amylose and amylopectin in an amylose:amylopectin ratio ranging from about 30:70 to about 95:5, and extruding the ceramic batch composition through an extrusion die to form an extruded green ceramic article.
Abstract:
In a three-dimensional printing method example, build material granules are applied. Each of the build material granules includes uncoated, primary ceramic particles agglomerated together by a binder that is soluble in a primary solvent of a fusing agent. The fusing agent is selectively applied on at least a portion of the build material granules. The binder dissolves and a green body including a slurry of the uncoated, ceramic particles is created.
Abstract:
A refractory brick including a refractory composition comprising, by weight based on total weight of the composition: 5% to 50% olivine; 3.5% to 35% magnesia- alumina spinel; optionally, 1 % to 10% alumina; and the balance essentially magnesite and impurities. In certain non-limiting embodiments, the refractory brick can have a thermal conductivity of 2.6 W/(m . K) or less when tested at 1400°C, while maintaining a coefficient of thermal expansion of 12.6x10 -6 /°C or less.
Abstract:
A coloring solution for dental zirconia ceramics and a method for using the same are provided. The coloring solution consists of coloring agents, a solvent, and an additive. The coloring agents are a combination of two or more rare earth metal compounds, wherein the rare earth metal compounds have rare earth metal ions selected from the group consisting of praseodymium (Pr) ions, erbium (Er) ions, cerium (Ce) ions, and neodymium (Nd) ions. The concentration of the rare earth metal ions in the solution is 0.05-3 mol/liter solvent. The molar ratio of Pr ions : Er ions : Ce ions : Nd ions in the solution is 1 :(10-50):(0-20):(0-30).
Abstract:
The present invention relates to translucent floor and wall tiles, on the surface of which patterns can be designed by making use of fixed or changeable pattern templates and which provide aesthetical view to the places and moreover which can be used for some purposes such as notice, warning, direction etc. by placing, in the rear part, light sources in different colors and properties such as LED and fluorescent, and to the production method thereof. Within the present invention, translucent tile can be obtained by adding ground glass and frit and increasing the amount of feldspar in the tile structure. It is possible to obtain translucent tiles within the present invention by applying these processes separately, or in different combinations. The organic and inorganic binders are chosen among many organic polymers such as silicates, lignosulfonates, starch- and glucose-derivatives, polyacrylates polysulfonates, polyphosphates, cellulose-derrivatives and carboxylic acid polymers and polyvinyl resins.
Abstract:
An abrasive article can include an abrasive aggregate with the abrasive aggregate having a plurality of silicon carbide particles bonded together by a binder material. The binder material can include a vitreous phase material, a crystalline phase material, or both. In an embodiment, the crystalline phase material can include an aluminosilicate material. In a particular embodiment, abrasive aggregates can be formed from a mixture including silicon carbide particles, a binder material, and a liquid carrier. The mixture can be formed into a number of green granules that are vibrated and heated on a platen. In an illustrative embodiment, the green granules can then be heated to form abrasive aggregates.
Abstract:
An abrasive article can include an abrasive aggregate with the abrasive aggregate having a plurality of silicon carbide particles bonded together by a binder material. The binder material can include a vitreous phase material, a crystalline phase material, or both. In an embodiment, the crystalline phase material can include an aluminosilicate material. In a particular embodiment, abrasive aggregates can be formed from a mixture including silicon carbide particles, a binder material, and a liquid carrier. The mixture can be formed into a number of green granules that are vibrated and heated on a platen. In an illustrative embodiment, the green granules can then be heated to form abrasive aggregates.
Abstract:
Kostengünstiges Erzeugnis aus porösem Kohlenstoff, dessen Porenstruktur für eine Rückhaltung von Elektrodenbestandteilen geeignet ist, und das insbesondere für einen Einsatz als Elektrodenmaterial für eine Lithium- Schwefel - Sekundärbatterie dienen kann und ein Verfahren, das folgende Verfahrensschritte umfasst: (a) Bereitstellen eines Templats aus anorganischem Werkstoff, das sphärische Nanoteilchen und Poren enthält, (b) Infiltrieren der Poren des Templats mit einer Vorstufe für Kohlenstoff einer ersten Varietät, (c) Carbonisieren unter Bildung einer Innenschicht auf den Nanoteilchen mit einer ersten Mikroporosität, (d) Infiltrieren verbleibender Poren des Templats mit einer Vorläufersubstanz für Kohlenstoff einer zweiten Varietät, (e) Carbonisieren der Vorläufersubstanz wobei auf der Innenschicht eine Außenschicht mit einer zweiten Mikroporosität, dieniedriger ist als die erste Mikroporosität, erzeugt wird, und (f) Entfernen des Templats unter Bildung des Kohlenstofferzeugnisses mit Schichtverbundstruktur, umfassend eine Innenschicht aus Kohlenstoff mit einer ersten, höheren Mikroporosität, die eine einer Kavität zugewandte freie Oberfläche aufweist, sowie eine Außenschicht aus Kohlenstoff mit einer zweiten, niedrigeren Mikroporosität, die eine der Kavität abgewandte freie Oberfläche aufweist.