Abstract:
A method for stabilization of collagen matrices and of condensation of natural and synthetic polymers that uses 2-halo-4, 6-dialkoxy-1, 3, 5-triazines in the presence of one or more amines as activating agents for reactions of crosslinking, condensation, grafting, and curing of collagen matrices, cellulose, modified celluloses, polysaccharides, acid unsaturated polymers, and chiral and non-chiral amines, etc. Forming an integral part of the present invention is also the method for production on an industrial scale of 2-halo-4, 6-dialkoxy-1, 3, 5-triazines.
Abstract:
A method for stabilization of collagen matrices and of condensation of natural and synthetic polymers that uses 2-halo-4, 6-dialkoxy-1, 3, 5-triazines in the presence of one or more amines as activating agents for reactions of crosslinking, condensation, grafting, and curing of collagen matrices, cellulose, modified celluloses, polysaccharides, acid unsaturated polymers, and chiral and non-chiral amines, etc. Forming an integral part of the present invention is also the method for production on an industrial scale of 2-halo-4, 6-dialkoxy-1, 3, 5-triazines.
Abstract:
Disclosed herein are novel triazines and related compounds, the synthesis thereof, and compositions, including pharmaceutical compositions, comprising the novel triazines and related compounds. Such novel triazines and related compounds function to inhibit or block entry of viruses of the Flaviviridae family, including Hepatitis C virus (HCV), into cells that are susceptible to virus infection. These compounds are useful for the treatment, therapy and/or prophylaxis of viral diseases and infection, including HCV infection.
Abstract:
Disclosed herein are novel triazines and related compounds, the synthesis thereof, and compositions, including pharmaceutical compositions, comprising the novel triazines and related compounds. Such novel triazines and related compounds function to inhibit or block entry of viruses of the Flaviviridae family, including Hepatitis C virus (HCV), into cells that are susceptible to virus infection. These compounds are useful for the treatment, therapy and/or prophylaxis of viral diseases and infection, including HCV infection.
Abstract:
The present invention concerns process for obtaining melamine at high purity characterized by comprising the steps of : - quenching a melamine melt, deprived of off-gases of the melamine synthesis and containing melamine impurities such as ammeline, ammelide and polycondensates, with an aqueous solution comprising ammonia under conditions such to substantially convert polycondensates into melamine, obtaining a melamine solution substantially free of polycondensates, recovering melamine from said melamine solution by melamine crystallisation, obtaining melamine crystals and a melamine crystallization mother liquor, - treating said crystallization melamine mother liquor under conditions such to convert at least a portion of its ammeline content into ammelide and melammine, obtaining a treated mother liquid having at least a reduced ammeline content. The invention also concerns a high-pressure non-catalytic plant for the production of high-purity melamine implementing the above process and apparatuses suitable to be used in this plant.
Abstract:
The present invention relates to certain novel compounds of Formula (I) and methods for preparing these compounds, compositions, intermediates and derivatives thereof and for the treatment of prokineticin 1 or prokinetin 1 receptor mediated disorders.
Abstract:
A method of nitrating electron-deficient carbocyclic or heterocyclic aromatic compounds such as pyridines, diazines and triazines and benzenoid aromatics having electron-withdrawing substituents involves first reacting the aromatic species with a sulphilimine species or with the corresponding N-alkali metal salt thereof to generate an N-(hetero)aryl-S,S-dialkyl, diaryl or alkylarylsulphilimine derivative. This intermediate may then be readily oxidised under relatively mild conditions using a peroxycarboxylic acid such as m-chloroperbenzoic acid, peracetic or peroxytrifluoroacetic acid. Good yields of nitrated products are obtained including some previously unprepared. The novel N-alkali(alkylaryl)sulphilimine reagents are prepared by reacting an alkali metal hydride, an alkali metal hydrogenous base or an alkyl lithium with the corresponding sulphilimine. Preferred salts are the N-lithio types and the preferred sulphilimine is diphenylsulphilimine. Where the salt is used reaction should be in an aprotic solvent but if the sulphilimine per se is the reagent a polar solvent is used.
Abstract:
Compounds of formula (I), and their N-oxides and agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetation. In said formula (I) J is J-1 - J-19, R is C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C3-C6 alkoxyalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C2-C6 cyanoalkyl, C1-C6 nitroalkyl, (CH2)p-OR , CH=CH(CH2)q-OR , CC(CH2)q-OR , C2-C6 alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C3-C8 alkoxycarbonylalkyl, C3-C8 alkylcarbonyloxyalkyl or oxiranyl optionally substituted with 1-3 C1-C3 alkyl; also disclosed are compositions containing the compounds of formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of formula (I).
Abstract:
The invention relates to amino acid derivatives of formula (I), in which the groups have the meaning given in the description. It also relates to the use thereof as inhibitors for endothelin receptors.