Abstract:
The disclosed apparatus weighs a grown crystal (3) that is being pulled from melt thereof. The lower end of a rope (4) of known weight is connected to the crystal (3), while the upper end of the rope (4) is connected to the drum (6) of a rope-winding unit (5). The rope-winding unit (5) includes a driver (7) coupled to the drum (6) so as to rotate the drum (6) and wind to the rope (4) thereon, and the weight of the rope-winding unit (5) including the drum (6) and driver (7) is known. At least one weight sensor (9) is coupled to the rope-winding unit (5) so as to measure the magnitude of gravity acting on the rope-winding unit (5). Whereby, the weight of the grown crystal (3) is determined by subtracting the sum of the known weights of the rope (4) and the rope-winding unit (5) from the measured magnitude of the gravity acting on the rope-winding unit (5).
Abstract:
A control system for controlling the operation of a system (18) for replenishing the melt in the crucible (24) of an apparatus (20) for growing tubular crystalline bodies (22) of a selected material. The melt replenishment system (18) comprises a container (302) for storing solid particles of said selected material and a dispenser (306) for transporting the particles from the container (302) to the crucible (24). The control system controls the rate at which the dispenser (306) transports particles from the container (302) to the crucible (24) based on the weight of the solid particles stored in the container (302), the weight of the crystalline body (22), and the pressure inside the crystalline body (22). Additionally, the control system may be adapted to control the temperature of the crucible heater (26) of the apparatus (20). Compensation is provided by this invention for weight measurement errors that are created by pressure fluctuations within the tubular crystalline body (22).
Abstract:
A control system for controlling the operation of an apparatus for growing tubular crystalline bodies. The control system comprises a weight sensor (100) for measuring the weight of the crystal, a pressure sensor (102) for measuring the pressure inside the crystal, and a controller (105) coupled to the weight, length and pressure sensors for controlling the operation of the crystal growing apparatus. The controller is coupled to the die heater (26) of the apparatus for controlling the temperature of melt contained in the crucible (24) of the apparatus based on the outputs of the weight, length and pressure sensors. To ensure the wall of the tubular crystalline body is maintained at a substantially uniform thickness, precise measurement of the weight of the body must be made. Compensation is provided by this invention for weight measurement errors that are created by pressure fluctuations within the tubular crystalline body.
Abstract:
본 발명은 시드 케이블의 흔들림이 발생되더라도 실리콘 융액 계면에서 잉곳의 직경 및 위치를 정확하게 측정할 수 있는 잉곳 성장장치 및 그 성장방법에 관한 것이다. 본 발명에 따른 잉곳 성장장치 및 그 성장방법은 잉곳측정센서와 다른 방향에 이미지 센서를 구비함으로써, 직경측정센서에서 측정된 잉곳의 직경을 이미지 센서에서 측정된 기준 위치의 변화에 따라 보정하여 정확한 잉곳의 직경을 산출할 수 있다.
Abstract:
본 발명은 쵸크랄스키법에 의해 단결정 잉곳을 성장시키면서 성장 계면의 형상을 제어하는 방법으로서, 잉곳의 계면이 목표로 하는 형상이 되도록 단결정 성장 공정의 제어 조건을 설정한 후 단결정 잉곳의 성장을 시작하는 단계, 상기 단결정 잉곳 상부에 배치된 로드셀로, 일정 시간 동안 성장한 잉곳의 중량을 측정하여 측정값을 도출하는 단계, 일정 시간 동안 공정 챔버의 외부에 배치된 직경측정 카메라에 의해 측정된 단결정 잉곳의 직경과, 일정 시간 동안 성장된 단결정 잉곳의 높이를 통해 상기 단결정 잉곳 중량의 이론값을 도출하는 단계, 상기 측정값과 이론값의 차이를 도출하여, 성장 중인 단결정 잉곳의 성장 계면 형상을 예측하는 단계 및 예측된 단결정 잉곳의 계면 형상과 목표로 하는 단결정 잉곳의 계면의 형상을 비교하여, 단결정 잉곳 성장 중의 공정 조건을 변경하는 단계를 포함할 수 있다. 따라서, 성장 중인 잉곳의 계면 형상을 단결정 잉곳의 성장 공정 중에 예측할 수 있어, 공정 조건을 제어하여 목표로 하는 계면 형상으로 실리콘 잉곳을 성장시킬 수 있다.
Abstract:
A method and apparatus for the production of r-plane single crystal sapphire is disclosed. The method and apparatus may use edge defined film-fed growth techniques for the production of single crystal material exhibiting an absence of lineage.
Abstract:
In accordance with the present invention, taught is a high purity germanium crystal growth method utilizing a quartz shield inside a steel furnace. The quartz shield is adapted for not only guiding the flow of an inert gas but also preventing the germanium melt from contamination by insulation materials, graphite crucible, induction coil and stainless steel chamber. A load cell provides automatic control of crystal diameter and helps to ensure exhaustion of the germanium melt. The method is both convenient and effective at producing high purity germanium crystals by relatively low skilled operators.
Abstract:
A method for producing a solid layer material (42), comprising providing (70) a first layer (30); providing (72) a second liquid layer (32) on the first layer (30); providing (74) a third liquid layer (34) on the second liquid layer (32), wherein the third liquid layer has a melting point that is higher than a melting point of the second liquid layer, and wherein the second liquid layer is between the first and third layers; cooling (76) a surface of the third liquid layer to a temperature less than the melting point of the third liquid layer; forming (78) the solid layer from the third liquid layer while cooling the third layer liquid; and removing (80) the solid layer.
Abstract:
Diameter control in Czochralski crystal growth is accomplished by progressively measuring both the temperature of the melt by heat sensor (11) and the weight of the residue of the melt in the crucible (2) by weighing means (9). The weight measurement data is fed to microprocessor (11) having a control algorithm. The microprocessor output and temperature measurement output are fed to a three-term temperature controller (13) which regulates the temperature of the melt to thereby control automatically the diameter of the crystal.