Abstract:
Methods and controllers for dynamically altering the phase of a firing sequence during operation of an engine are described. The described methods and controllers are particularly useful in conjunction with dynamic skip fire operation of the engine.
Abstract:
Die Erfindung betrifft ein Verfahren zum Betreiben einer Antriebsvorrichtung (1) eines Kraftfahrzeugs, die einen Verbrennungsmotor (2) mit einem ersten Abgasturbolader (5) und einem zweiten Abgasturbolader (6) und wenigstens eine Elektromaschine (3) aufweist, wobei die Abgasturbolader (5,6) in Reihe geschaltet sind, wobei zumindest der zweite Abgasturbolader (6) Mittel zum Variieren seiner Leistung aufweist, und wobei die Leistung zumindest des zweiten Abgasturboladers (6) in Abhängigkeit von einem angeforderten Soll-Drehmoment der Antriebsvorrichtung (1) variiert wird. Es ist vorgesehen, dass die Elektromaschine (3) in Abhängigkeit von dem Zeitpunkt der Variierung angesteuert wird, um eine Abweichung eines Ist-Drehmoments der Antriebsvorrichtung (1) von dem Soll-Drehmoment zu kompensieren.
Abstract:
A secondary fueling system for a diesel internal combustion engine includes an injector which injects an oxygen-containing secondary fuel into the engine's air intake system, a pump which pumps the secondary fuel to the injector, a sensor which senses pressure in the air intake system, and a secondary fuel controller which receives output signals from the sensor and pump, operator inputs for the engine, and data signals pertaining to operation of the engine from the main engine controller, determines an injection amount of the secondary fuel based thereon, and controls the pump based on the determined injection amount. A position of the injector in the engine's air intake system is distant from the engine's intake valves and is based on the engine's displacement, e.g., it relates to approximately equal to one quarter of the engine's displacement.
Abstract:
Verfahren zum Betreiben eines Systems (1) aus mehreren Brennkraftmaschinen (2, 3), wobei die Brennkraftmaschinen (2, 3) derart gekoppelt sind, dass von den Brennkraftmaschinen (2, 3) bereitgestellte Antriebsleistungen von mindestens ei- nem gemeinsamen Verbraucher (4) abgenommen werden, wobei jeder Brenn- kraftmaschine (2, 3) eine individuelle Abgasnachbehandlungseinrichtung (11, 12), in welcher das Abgas der jeweiligen Brennkraftmaschine einer individuellen Ab- gasnachbehandlung unterzogen wird, oder mehreren Brennkraftmaschinen eine gemeinsame Abgasnachbehandlungseinrichtung, in welcher das Abgas der jewei- ligen Brennkraftmaschinen einer gemeinsamen Abgasnachbehandlung unterzo- gen wird, nachgeordnet ist, und wobei zur Regeneration einer Abgasnachbehand- lungseinrichtung (11, 12) die Antriebsleistung mindestens einer ersten Brenn- kraftmaschine reduziert wird, die Temperatur des Abgases der oder jeder ersten Brennkraftmaschine erhöht wird, und ferner die Antriebsleistung mindestens einer zweiten Brennkraftmaschine derart erhöht wird, dass die Reduzierung der An- triebsleistung an der oder jeder ersten Brennkraftmaschine zumindest teilweise kompensiert wird.
Abstract:
Methods and arrangements are described for controlling transitions between firing fractions during skip fire operation of an engine in order to help smooth the transitions. Generally, firing fractions transitions are implemented gradually, preferably in a manner that relatively closely tracks manifold filling dynamics. In some embodiments, the commanded firing fraction is altered each firing opportunity. Another approach contemplates altering the commanded firing fraction by substantially the same amount each firing opportunity for at least a portion of the transition. These approaches work particularly well when the commanded firing fraction is provided to a skip fire controller that includes an accumulator functionality that tracks the portion of a firing that has been requested, but not delivered, or vice versa. In various embodiments, commanded firing fraction changes are delayed relative to initiation of the change in throttle position to help compensate for inherent delays associated with changing the manifold air pressure.
Abstract:
The invention concerns a method and system for driving a power engine unit either in a speed control mode or in a load control mode, and changing the control mode. Control mode data of the power engine units is sent and control mode data of other power engine units is received among the units being connected electrically with each other (31). It is determined whether predetermined amount from the total moment of inertia of all power engine units electrically connected with each other is running in the speed control mode after the change of the control mode (32). The power engine unit changes the control mode if the determining step indicates that at least said predetermined amount is running in the speed control mode (33).
Abstract:
The invention mainly relates to a method for thermal protection of an internal combustion engine of a motor vehicle comprising a cooling circuit inside of which circulates a coolant liquid with a temperature that varies over time, characterised in that it comprises the step of adapting in a closed loop the maximum limitation torque (Cmax_lim) of the internal combustion engine in accordance with a correction coefficient (Ccor) which is dependent on the difference between an instantaneous temperature change speed (Vi) of the coolant liquid and a maximum temperature change speed (Vlim) of the coolant liquid. The invention also relates to the corresponding engine computer.
Abstract:
A controller for an internal combustion engine that includes a supercharger, the controller includes an electronic control unit. The electronic control unit is configured to adjust engine torque to correspond to a target torque, execute torque reduction control in which the engine torque is temporarily reduced to correspond to the target torque when a torque reduction request is made to reduce toque of the internal combustion engine, and adjust supercharged pressure to correspond to a target supercharged pressure that is set based on an accelerator pedal operation by a driver, during the torque reduction control.