Abstract:
Systems and methods for reducing erroneous weighing of items such as by detecting items (11) extending beyond a periphery of a weigh platter (20, 120, 170, 240) whereby in one configuration, the system employs a light guide (30, 320) for routing a light beam to a detector (40,140) operative to detect interruption of the beam due to an item encroaching upon or overhanging an edge of the platter. In another configuration, the scale includes a perimeter gap (252, 257) between the platter outer edge and scanner housing frame or checkout counter, a light beam directed angularly upward through the gap is partially obstructed by the frame and platter whereby light exits the gap forming a light plane, wherein an object placed on the platter extending across the gap intersects the light plane thus scattering light rays, some of which are sensed by a detector (280). Various indicators (295, 297) for alerting the operator of off-scale detection are also described.
Abstract:
Um ein möglichst einfach und kompakt aufgebautes Laser-Dosimeter (1) zu erhalten, schlägt die Erfindung vor, dass das Laser-Dosimeter (1) aus einem Gehäuse (2) besteht, welches in seiner dem Laserlicht zugewandten Außenwand (3) mehrere Laserlicht durchlassende Öffnungen (4) aufweist, hinter denen jeweils mindestens ein optischer Sensor (6) angeordnet ist. Die einzelnen Sensoren (6) messen Laserlicht unterschiedlicher Wellenlängen und / oder unterschiedlicher Wellenlängenbereiche, wobei jeder der Sensoren (6) mit einer in dem Gehäuse (2) befindlichen Auswerteelektronik (7) elektrisch verbunden ist, welche die empfangenen Signale auswertet und speichert. Die für den Betrieb der Auswerteelektronik (7) benötigte Energieversorgung erfolgt vorzugsweise mittels einer ebenfalls in dem Gehäuse (2) angeordneten Stromquelle (8).
Abstract:
Provided is an illuminance sensor wherein a photoelectric converter (1) includes three optical sensors (PS), and each of the optical sensors (PS) outputs the current of the difference between the photocurrents generated by two optical diodes (PDA, PDB) having different light receiving characteristics. The ratios between the light receiving areas of the two optical diodes (PDA, PDB) in the respective three optical sensors (PS) are different from each other, and the sum of the positive currents among the output currents from the three optical sensors (PS) is fixed with respect to a fixed illuminance, irrespective of the type of the light source. An arithmetic and control unit (7) obtains illuminance, based on the sum of the positive currents out of the output currents from the three optical sensors (PS).
Abstract:
A method of sensing motion in a predetermined area is provided. The method may include using a digital output motion sensor to produce a digital output signal indicative of the presence of motion in the predetermined area. The method may further include transmitting the digital output signal along a signal path independent of analog amplification and filtering. The method may also include using a microprocessor coupled to the signal path to receive the digital output signal and to process the digital output signal.
Abstract:
Bei einem Verfahren und einer Vorrichtung zur adaptiven Änderung der Integrationszeit eines Infrarotsensors (8) ist vorgesehen, einen Einstellwert für die Integrationszeit in Abhängigkeit von der ermittelten Temperaturinformation eines zu prüfenden Objektes (2) automatisch zu bestimmen. Der Dynamikbereich des Infrarotsensors (8) kann somit an den interessierenden Temperaturbereich des zu prüfenden Objektes (2) dynamisch angepasst werden.
Abstract:
The invention may be embodied as a glare detection system or as a method of detecting glare. In a system according to the invention, there may be a light receiving surface, a first input channel, a second input channel, a glare signaling circuit and a glare reducing circuit. The first input channel may provide an indication of the amount of light impinging on a first portion of the light receiving surface. The second input channel may provide an indication of the amount of light impinging on a second portion of the light receiving surface. The glare signaling circuit ("GSC") may have a first input port in communication with the first input channel, a second input port in communication with the second input channel, a logic-or gate capable of producing an output signal when the logic-or gate detects that the first input channel or the second input channel indicates glare on the light receiving surface. The glare reducing circuit ("GRC") may be in communication with the logic-or gate, and may be capable of reacting when the logic-or gate produces the output signal. For example, the GRC may react by determining where on the light receiving surface glare exists.
Abstract:
Method and systems related to obstructing a first predefined portion of at least one defined wavelength of light incident upon a first photo-detector array; and detecting the at least one defined wavelength of light with a photo-detector in a second photo-detector array.
Abstract:
Die Erfindung betrifft ein Verfahren zum Betreiben einer Sensorvorrichtung zur Detektion von Störeinflüssen auf der Außenseite eines optisch durchlässigen Körpers. Derartige Verfahren und Sensorvorrichtungen sind im Stand der Technik grundsätzlich bekannt. Sie dienen unter anderem dazu, Regen oder Schmutz auf der Windschutzscheibe eines Fahrzeugs zu detektieren und bei detektiertem Schmutz eine Scheibenwaschanlage des Fahrzeugs, das heißt die Scheibenwischer plus Zufuhr von Wischwasser zu aktivieren. Bei festgestelltem Regen brauchen lediglich die Scheibenwischer ohne Zufuhr von Wischwasser aktiviert zu werden. Aufgabe der Erfindung ist es, eine derartige bekannte Sensorvorrichtung derart weiterzubilden, dass sie bei Erkennen einer Bewegung eines nicht-transparenten körperlichen Gegenstandes in ihrem Detektionsbereich ausgebildet ist, eine Schaltfunktion auszulösen. Diese Aufgabe wird gemäß der vorliegenden Erfindung dadurch gelöst, dass interne Signale der Sensorvorrichtung geeignet ausgewertet werden.
Abstract:
An automatic gain control technique integrates samples of an incoming analog signal a controlled amount of time so that the magnitudes of the samples lie within the desired input window of an analog-to-digital converter or other signal processing device. The values of the samples are then determined from a combination of the output of the signal processing device and their integration time. This is utilized in a system for determining the temperature of a surface of an object, without contacting the surface, by measuring the level of its infra-red radiation emission. A particular application of the system is to measure the temperature of a semiconductor wafer within a processing chamber while forming integrated circuits on it. The measuring system is configured on a single printed circuit board with an extra height metal heat sink structure to which a cooling unit is mounted. A photodetector and a circuit chip which performs the signal integrations are mounted within the cooling unit and operated at a uniform temperature. The combination of the variable time integration and cooling techniques greatly increases the signal-to-noise ratio of the measuring system. This allows surface temperature measurements to be made down to about 250 DEG C by measuring object emissions at slightly less than one micron in wavelength, conditions which provide signal levels which are normally too weak to measure accurately.
Abstract:
An optical sensor arrangement comprises a photodiode (11), an integrator (12) with an integrator input (15) coupled to the photodiode (11), a comparator (13) with a first input (18) coupled to an integrator output (16) of the integrator (12), and a reference capacitor circuit (14) that is coupled to the integrator input (15) and is designed to provide a charge package to the integrator input (15). In a start phase (A), charge packages are provided to the integrator input (15), until a comparator input voltage (VIN) at the first input (18) of the comparator (13) crosses a comparator switching point.
Abstract translation:光学传感器装置包括光电二极管(11),具有耦合到光电二极管(11)的积分器输入(15)的积分器(12),具有第一输入端(18)的比较器(13) )耦合到积分器(12)的积分器输出(16);以及参考电容器电路(14),耦合到积分器输入(15)并且被设计为向积分器输入(15)提供电荷包。 在开始阶段(A)中,向积分器输入端(15)提供电荷包,直到比较器(13)的第一输入端(18)处的比较器输入电压(VIN)越过比较器切换点。 p >