Abstract:
A non-destructive method for chemical imaging with ~ 1 nm to 10 μιη spatial resolution (depending on the type of heat source) without sample preparation and in a non-contact manner. In one embodiment, a sample undergoes photo-thermal heating using an IR laser and the resulting increase in thermal emissions is measured with either an IR detector or a laser probe having a visible laser reflected from the sample. In another embodiment, the infrared laser is replaced with a focused electron or ion source while the thermal emission is collected in the same manner as with the infrared heating. The achievable spatial resolution of this embodiment is in the 1-50 nm range.
Abstract:
A sensor chip for detecting an immune response against an influenza virus, the sensor chip including a substrate having a surface and a plurality of hemagglutinin polypeptides bound to discrete locations on the surface of the substrate, each hemagglutinin polypeptide having a hemagglutinin epitope. Detection devices containing the sensor chip and methods of detecting influenza immune responses are also described herein.
Abstract:
Die Erfindung betrifft ein thermoakustisches Tomographieverfahren und einen thermoakustischen Tomograph (1) zur Abbildung eines Objekts (2) mit zumindest einer Quelle (3) zur thermischen Anregung des Objekts (2) und zumindest einem Detektor (5) zur Erfassung der vom Objekt (2) durch die Anregung hervorgerufenen akustischen Wellen (4), mit einer Einrichtung (7) zur Bewegung des Objekts (2) und bzw. oder des zumindest einen Detektors (5) relativ zueinander und mit einer Einrichtung (8) zur Rekonstruktion des Objekts (2) aus den erfassten akustischen Wellen (4) in Abhängigkeit der jeweiligen Lage des Objekts (2). Zur Schaffung eines derartigen Verfahrens bzw. einer derartigen Einrichtung durch die das Objekt (2) mit möglichst niedrigem algorithmischen Aufwand, aber mit möglichst hoher Auflösung rekonstruiert werden kann ist vorgesehen, dass der zumindest eine Detektor (5) zumindest in einer Dimension eine Ausdehnung aufweist, welche mindestens √8.d beträgt, wobei d den maximalen Abstand eines Punktes des abzubildenden Objekts (2) vom Detektor (5) bezeichnet.
Abstract:
A programmable substance detector includes a light source, a sample cell, a programmable diffraction grating positioned to receive light from the light source and to direct diffracted light to the sample cell, and a detector associated with the cell to detect a match between a characteristic of the diffracted light and a corresponding characteristic of a substance within the cell.
Abstract:
Die Erfindung bezieht sich unter anderem auf eine Vorrichtung (10) zum Analysieren eines Stoffes (101) mit einer Anregungssendeeinrichtung (100) zum Erzeugen mindestens eines elektromagnetischen Anregungsstrahls (SA), insbesondere Anregungs-Lichtstrahls, mit zumindest einer Anregungswellenlänge, einer Detektionseinrichtung (106) zur Detektion eines Reaktionssignals (SR) und einer Einrichtung (107) zum Analysieren des Stoffes anhand des detektierten Reaktionssignals (SR).
Abstract:
A device (100), and corresponding method, includes a pump light source (102) configured to be modulated at a pump modulation and to irradiate a target specimen (112). The device also includes a probe light source (106) arranged to generate a speckle pattern (114) from the target specimen, as well as a sensor (110) configured to detect changes in at least one of position and intensity of one or more speckle lobes of the speckle pattern having correlation with the pump modulation. The device and method are used for non-contact monitoring and remote sensing of surfaces, gases, liquids, particles, and other target materials by analyzing speckle pattern changes as a function of pump light irradiation. Advantages can include much higher sensitivity than existing methods; the ability to use visible probe wavelengths for uncooled, low-cost visible detectors with high spatial resolution; and the ability to obtain target material properties without detecting infrared light.
Abstract:
A method and apparatus for non-invasively determining a concentration of glucose in a subject using optical excitation and detection is provided. The method includes emitting an exciter beam to irradiate a portion of tissue of the subject, causing physical and chemical changes in the surface, and causing an initial back scattering of light. The method further includes periodically emitting a probe beam which irradiates the portion of tissue and causes periodic back scatterings of light. The initial and periodic back scatterings are detected and converted into electrical signals of at least the amplitude, frequency or decay time of the physical and chemical changes, the back scatterings being modulated by the physical and chemical changes. By differentiating over time at least one of the amplitude, frequency or decay time of the physical and chemical changes, the concentration of glucose may be determined.
Abstract:
A polarization modulation photoreflectance technique has been developed for optical characterization of semiconductor quantum confined structures. By using a tunable laser source in conjunction with polarization state modulation, a single beam modulation spectroscopy technique may be used to characterize the optical response of semiconductor materials and structures. Disclosed methods and instruments are suitable for characterization of optical signatures of quantum electronic confinement, including resolution of excitonic states at the band edge or other direct or indirect critical points in the band structure. This allows for characterization of semiconductor quantum well structures, for characterization of strain in semiconductor films, and for characterization of electric fields at semiconductor interfaces.
Abstract:
A polarization modulation photoreflectance technique has been developed for optical characterization of semiconductor quantum confined structures. By using a tunable laser source in conjunction with polarization state modulation, a single beam modulation spectroscopy technique may be used to characterize the optical response of semiconductor materials and structures. Disclosed methods and instruments are suitable for characterization of optical signatures of quantum electronic confinement, including resolution of excitonic states at the band edge or other direct or indirect critical points in the band structure. This allows for characterization of semiconductor quantum well structures, for characterization of strain in semiconductor films, and for characterization of electric fields at semiconductor interfaces.
Abstract:
A programmable substance detector includes a light source, a sample cell, a programmable diffraction grating positioned to receive light from the light source and to direct diffracted light to the sample cell, and a detector associated with the cell to detect a match between a characteristic of the diffracted light and a corresponding characteristic of a substance within the cell.