Abstract:
An explosive detection system for detecting explosive trace in a sample includes a detection unit, and a processing unit. The detection unit that receives a desorbed sample includes a first heater, a second heater, a first resistance temperature detector (RTD), a second RTD, and an amplifier. The first heater is exposed to the desorbed sample. The first heater and the second heater are supplied with specific voltage for three or more experiments. The first RTD and the second RTD measure changes in resistance due to heating of the first heater and the second heater to calculate voltages across the first RTD and the second RTD. The amplifier amplifies the voltages to calculate a differential voltage for each of the three or more experiments, and converts the differential voltage into a digital signal. The processing unit is configured to process the digital signal to detect explosive trace in the desorbed sample.
Abstract:
Portable electronic devices may be inspected for the presence of explosives using a combination of nuclear quadrupole resonance (NQR) and explosive trace detection (ETD). NQR may be used to detect bulk or sheet explosives while the ETD may be used to detect minute quantities of explosive particulates. An alarm indication may be generated when either the NQR spectroscopy or the ETD detects an explosive material.
Abstract:
A computer4mpl.emested system tor nearfield gunshot and explosion detection comprising a hardware device with a differential air pressure sensor, a pressure amplifier that amplifies pressure signals generated by the differential air pressure sensor, a microphone, a microphone amplifier that, amplifies audio signals generated by the microphone, and a pulse counter that calculates a total event length. The system includes a digital processor that processes the amplified signals from the differential air pressure sensor and the microphone and a data radio that generates alerts based on input from the differential air pressure sensor and the microphone. The system determines whether a gunshot event or m explosive event has occurred based on a pressure length sensitivity setting, a microphone length sensitivity setting, and a correlation sensitivity setting.
Abstract:
The present invention provides, inter alia , a device comprising a colorimetric detection layer configured to undergo a color change upon interaction with a first analyte of interest. The detection layer comprises a first plurality of self-assembled fiber bundles. At least a fraction of the fiber bundles undergo a change from a first conformation to a second conformation upon interaction with the first analyte of interest, thereby undergoing a color change. The invention also provides a method for using the system to detect an analyte of interest.
Abstract:
A laser system and method employing stimulated Raman scattering using a main laser pulse and a delayed replica reference pulse are provided. A further aspect calculates stimulated Raman loss and stimulated Raman gain from a reflected laser light scatter collected from a fabric or paper specimen. In another aspect, a laser system receives a low energy portion of a spectrum of main and reference laser pulses with a first photodetector, receives a higher energy portion of the spectrum of the main and reference pulses with a second photodetector, and uses a controller to determine a Raman active phonon transfer of energy manifested as an increase in the reflected laser scatter in a lower energy portion of the spectrum and a decrease in a higher energy portion of the spectrum. In yet another aspect, the controller automatically determines if a hazardous particle or substance such as an explosive, is present on a specimen.
Abstract:
A method for the colorimetric detection of two compounds in a bulk sample comprises the steps of forming an aqueous solution of the bulk sample, inserting a single dip strip having a pair of test regions each having separate colorimetric indicator reagents for a different one of the two compounds to be tested for into the solution and then removing the dip strip from the solution, and observing the test regions for color changes denoting the presence of the two compounds. The methodology is especially adapted for the colorimetric detection of nitrates and chlorates, two components commonly associated with explosives and particularly homemade explosives.
Abstract:
A method of treating meibomian gland dysfunction is disclosed. The method includes directing RF energy to an internal portion of a meibomian gland, selectively targeting an obstruction within a duct of the meibomian gland with the applied RF energy to melt, loosen, or soften the obstruction, and expressing the obstruction from the duct of the meibomian gland. An apparatus for treating meibomian gland dysfunction is also disclosed. The apparatus comprises at least one RF electrode configured to direct RF energy to an internal portion of a meibomian gland located in an eyelid of an eye, the at least one RF electrode further configured to selectively target an obstruction within a duct of the meibomian gland with the applied RF energy to melt, loosen, or soften the obstruction. The apparatus also comprises at least one expressor configured to express the obstruction from the duct of the meibomian gland.
Abstract:
A method of treating meibomian gland dysfunction is disclosed. The method includes directing RF energy to an internal portion of a meibomian gland, selectively targeting an obstruction within a duct of the meibomian gland with the applied RF energy to melt, loosen, or soften the obstruction, and expressing the obstruction from the duct of the meibomian gland. An apparatus for treating meibomian gland dysfunction is also disclosed. The apparatus comprises at least one RF electrode configured to direct RF energy to an internal portion of a meibomian gland located in an eyelid of an eye, the at least one RF electrode further configured to selectively target an obstruction within a duct of the meibomian gland with the applied RF energy to melt, loosen, or soften the obstruction. The apparatus also comprises at least one expressor configured to express the obstruction from the duct of the meibomian gland.