Abstract:
A spectrometer (100) for characterizing a radiation beam, the spectrometer (100) comprising an optical radiation guiding system comprising a collimator (110) for collimating the radiation beam into a collimated radiation beam, and a beam shaper (120) for distributing the power of the collimated radiation beam over a discrete number of line shaped fields, the spectrum of the collimated radiation beam being delivered to each of the discrete number of line shaped fields, and a spectrometer chip (130) wherein the spectrometer chip (130) is adapted for processing the radiation in a discrete number of line shaped fields coming from the beam shaper (120).
Abstract:
A light emitting diode package for a directional display may comprise light emitting diodes and a protection diode. The protection diode may be arranged in a well that is at a different location to the well that the light emitting diodes are arranged. The directional display may include a waveguide. The waveguide may include light extraction features arranged to direct light from an array of light sources by total internal reflection to an array of viewing windows and a reflector arranged to direct light from the waveguide by transmission through extraction features of the waveguide to the same array of viewing windows. The brightness of the directional display can be increased. An efficient and bright directional display system can be achieved. Efficient light baffling for light escaping from the edge of the waveguide is achieved through light deflecting extraction films.
Abstract:
By introducing a stack of alternating high and low index dichroic material layers on the exit surface of a waveguide for a wedge type directional backlight, natural reflectivity differences between polarized components can be increased, effectively reflecting the vast proportion of S-polarized light rays, while at the same time transmitting the P-polarized light rays, of light impacting the exit surface of the waveguide at an angle sufficient to exit the waveguide. This recovers polarization in wedge type backlight systems, increasing illumination exiting the waveguide. Also, on the back reflecting surface of the waveguide, a birefringent material can be added to efficiently transform S-polarized reflected light from the dichroic stack, into returning P-polarized light. Because returning rays that are now P-polarized by the birefringent material have already achieved the critical angle for exiting the waveguide, the rays transformed to P-polarization can now also exit the waveguide, increasing waveguide illumination.
Abstract:
An optical system having an optical waveguide for collecting light, a receiver for receiving the light, and redirecting optics for transferring the light from the optical waveguide to the receiver. The optical system can be used for concentrating light such as in solar applications. The optical system can also be used for diffusing light in illumination applications by replacing the receiver with a light source such that the light flows in the reverse of the concentration system.
Abstract:
An optical system having an optical waveguide for collecting light, a receiver for receiving the light, and redirecting optics for transferring the light from the optical waveguide to the receiver. The optical system can be used for concentrating light such as in solar applications. The optical system can also be used for diffusing light in illumination applications by replacing the receiver with a light source such that the light flows in the reverse of the concentration system.
Abstract:
The present application in particular is directed to an oven muffle (1) comprising a lighting system (3). The lighting system (3) comprises a light source (6) and a light guide (4) attached to the outer surface of the oven muffle (1), the light guide (4) has at least one light guiding tube (4) arranged and adapted to couple light of the light source (6) into the light guiding tube (4), wherein the light guiding tube (4) extends in parallel to the light guiding direction along a respective wall (5) from a light tube exit window to its light tube face side, preferably lying beyond a respective edge of the wall (5).
Abstract:
A solar concentrator having a concentrator element for collecting input light, a redirecting component with a plurality of incremental steps for receiving the light and also for redirecting the light, and a waveguide including a plurality of incremental portions enabling collection and concentration of the light onto a receiver. Other systems replace the receiver by a light source so system optics can provide illumination.