Abstract:
We describe a window assembly (100) comprising: a window pane (102) comprising a glass or plastic sheet; and a layer of holographic recording medium (104) attached to said glass or plastic sheet; wherein said layer of holographic recording medium has recorded within the medium a volume hologram (106) configured to direct light incident onto said glass or plastic sheet to propagate within a thickness of said glass or plastic sheet, preferably to a photovoltaic element (120). In embodiments the volume hologram is fabricated by recording a transmission hologram and shrinking the recorded hologram to convert the transmission hologram to an edge-directing hologram configured to direct light in a direction to be totally internally reflected within the window pane, for example at greater than 40°, 50°, 60°, 70°, 75° or 80° to a normal to the surface of the hologram.
Abstract:
A display panel assembly comprises a transflective holographic screen, i.e., a transparent screen that reflects light from a projection system, comprising at least a volume hologram, a first protective element and a second protective element, each arranged in contact with the volume hologram such that the volume hologram is sandwiched between the first protective element and the second protective element. The display panel assembly further comprises a projection system focusing an image on the volume hologram comprising at least projection optics, mounting means arranged to fixedly mount the projection system relatively to the transflective holographic screen. The volume hologram comprises a plurality of diffractive patterns disposed in sequence across the volume hologram, each of the plurality of diffractive patterns being configured to diffuse the light rays from the projection system in a determined direction corresponding to the specific diffractive pattern and oriented towards a position of an intended eye of a user wearing the display panel assembly.
Abstract:
Laser ablation to direct write dot matrix holographic patterns onto the surface of polymeric coatings deposited on an embossing cylinder is described. The desired holographic pattern is ablated by interfering at least two laser beams directly onto the polymeric coating of the embossing cylinder in the pixel-by-pixel manner. The direct write laser ablation technique eliminates the size limitations of the holographic pattern created on the surface of the embossing cylinder, the need to combine smaller images to create a larger shim and the very need to use the shims, since large seamless embossing cylinders can be directly pixel-by-pixel ablated with larger sized images of great variety. The polymeric coatings for further direct write laser ablation can be deposited onto the embossing cylinder by various methods, including, but not limited to, molding or coating.
Abstract:
A surface microstructure is superimposed on the surface of a replication mould such as an injection moulding tool insert by laser interference exposure of a mask pattern and etching or electroplating the additional microstructure. The technique enables the post-processing of planar and non-planar replication moulds with additional microstructure to improve the functionality and value of the moulded components. A major area of application is an anti-reflection surface for injection moulded polymer optical components, achieved by the superposition of submicrometer anti-reflection grating structure onto injection moulding tool inserts.
Abstract:
Die Erfindung betrifft ein Sicherheitselement (1) mit einer ersten Volumenhologrammschicht (11), die ein Koordinatensystem mit den senkrecht zueinander stehenden Koordinatenachsen x und y (3, 4) in einem nicht gebogenen Zustand des Sicherheitselements (1) aufspannt, wobei in die erste Volumenhologrammschicht (11) ein erstes Volumenhologramm in mindestens einem ersten Bereich (51) eingebracht ist, wobei das erste Volumenhologramm derart ausgeformt ist, dass eine erste Information (21-30) in einem ersten vordefinierten gebogenen Zustand des Sicherheitselements (1) für einen Betrachter (7) in einer ersten Betrachtungssituation sichtbar ist und in dem nicht gebogenen Zustand des Sicherheitselements (1) in der ersten Betrachtungssituation nicht sichtbar ist oder umgekehrt.
Abstract:
Die Erfindung betrifft eine Vorrichtung (100) zum nachträglichen holografischen Kennzeichnen eines Verbundkörpers (1 ) sowie ein entsprechendes Verfahren, welches die Schritte umfasst: Bereitstellen oder Herstellen des Verbundkörpers (1), der eine zumindest in einem Bereich (7) photoempfindliche Hologrammschicht (3) umfasst; Anordnen des Verbundkörpers (1) auf oder in einer Halterung (101); Belichten des Verbundkörpers (1) mit kohärenter Strahlung (162), die in dem photoempfindlichen Bereich (7) der Hologrammschicht (3) interferiert, um eine holografische Information in den photoempfindlichen Bereich (7) der Hologrammschicht (3) zu belichten; Fixieren des belichteten Hologramms in der Hologrammschicht (3). Um qualitativ hochwertige Kontaktkopien ausführen zu können, ist vorgeschlagen, einen als eine Folie ausgebildeten Master (130) zu verwenden, der auf eine Vorderseite (12) des Verbundkörpers (1 ) aufgelegt wird.
Abstract:
The present invention relates to an appliance having a micro-pattern for displaying a pattern or a character, and a method for fabricating a structure having a micro-pattern, and more particularly, to a method for displaying a pattern or a character more effectively. To achieve above object, the appliance of the present invention includes a body, a structure provided to an outside or an inside of the body, and a micro-pattern for changing a light incident thereon from an outside of the micro-pattern to a light of a predetermined color to display a predetermined character or a predetermined pattern on the structure.
Abstract:
The invention relates to a method for producing a diffraction grating (20) for a diffractive optical element having one or more subareas (22) which comprises respective grating patterns defined by a grating constant and an angular orientation. The inventive method is characterized by setting the position of at least one source (12) from which radiation is incident on the diffraction grating (20) and the position of at least one target (18) towards which the diffraction grating (20) is intended to deflect the radiation. The spatial position and orientation of the subareas (22) and the grating constant and the angular orientation of the grating patterns required to deflect the radiation incident from the source (12) on the diffraction grating (20) towards the target (18) is determined using a local vector relation which correlates the orientation of the grating in a three-dimensional space with the incident and emergent radiation and the position and orientation of the grating patterns.
Abstract:
Various configurations of a directed energy assisted micro embossing machine/station in a vacuum chamber (7) utilized in a continuous manufacturing process and the web structure products (4) made by that process (optical disks, cards, tapes, holographic reflectors, diffusers, binary optical elements, etc.) are disclosed. The configurations can include a single machine roll to roll system (2, 3) for embossing optical features on the surface of a single substrate (4) and applying appropriate metallic, dielectric, semiconductor, polymer and other coatings all in a vacuum chamber (7).