Abstract:
A method for automatic calibration of read latency of a memory module is envisaged. The read latency is initially set to a default maximum value. The default maximum value is equivalent to the number of clock cycles required to complete a data read operation. A data pattern to be read from the memory module in consideration of the default maximum value is identified. A memory read operation is preformed, and a first data pattern is captured, in accordance with the default maximum value. The identified data pattern is compared with the first data pattern, and the default maximum value is iteratively calibrated based on the comparison thereof. Aforementioned steps are repeated across a plurality of memory read operations, and variations in the maximum default value are tracked, and an average maximum value is calculated based thereupon. The average maximum value is assigned as the read latency for the memory module.
Abstract:
The disclosed embodiments relate to components of a memory system that support timing-drift calibration. In specific embodiments, this memory system contains a memory device (or multiple devices) which includes a clock distribution circuit and an oscillator circuit which can generate a frequency, wherein a change in the frequency is indicative of a timing drift of the clock distribution circuit. The memory device also includes a measurement circuit which is configured to measure the frequency of the oscillator circuit. Additionally, the memory system contains a memory controller which can transmit a request to the memory device to trigger the memory device to measure the frequency of the oscillator circuit. The memory controller is also configured to receive the measured frequency from the memory device and uses the measured frequency to determine the timing drift in the memory device.
Abstract:
A memory system includes a memory controller coupled to at least one memory device via high-speed data and request links. The timing and voltage margins of the links are periodically calibrated to reduce bit error. The high-speed request links complicate calibration because commands issued over the uncalibrated request links can be erroneously interpreted by the memory device. Misinterpreted commands can disrupt the calibration procedure (e.g., a write command might be misinterpreted as a power-down command). The memory controller addresses this problem using a separate, low-speed control interface to issue a filter command that instructs the memory device to decline potentially disruptive requests when in a calibration mode.
Abstract:
A memory write timing system includes a modified memory bitcell including a storage device and a write/read circuit for writing/reading data to/from the storage device; and an output circuit for detecting the current state of the storage device.
Abstract:
A memory device comprises a first and second integrated circuit dies. The first integrated circuit die comprises a memory core as well as a first interface circuit. The first interface circuit permits full access to the memory cells (e.g., reading, writing, activating, pre-charging and refreshing operations to the memory cells). The second integrated circuit die comprises a second interface that interfaces the memory core, via the first interface circuit, an external bus, such as a synchronous interface to an external bus. A technique combines memory core integrated circuit dies with interface integrated circuit dies to configure a memory device. A speed test on the memory core integrated circuit dies is conducted, and the interface integrated circuit die is electrically coupled to the memory core integrated circuit die based on the speed of the memory core integrated circuit die.
Abstract:
A technique includes in response to a training mode, communicating between a device and a processor of a computer system over a data bit line of a bus. The technique includes based on the communication, regulating a timing between a strobe signal and a signal that propagates over the data bit line.
Abstract:
A self-adaptive programming circuit (150, 160, 173, 170, 175, 154, 103) for EEPROM (Fig. 2) is used to automatically tune an erase or write delay, providing an improved programming window. The programming circuit may also provide improvements in data retention for programmed memory cells. The invention can be applied more particularly in the field of EEPROM memories capable of page mode writing operations.
Abstract:
A communication channel includes a first component having a transmitter coupled to a normal signal source, and a second component having a receiver coupled to a normal signal destination. A communication link couples the first and second components. Calibration logic provides for setting an operation value for a parameter of the communication channel, such as by executing an exhaustive calibration sequence at initialization of the link. A tracking circuit, including a monitoring function, tracks drift in the parameter by monitoring a feedback signal that has a characteristic that correlates with drift in the communication channel, and updates, or indicates the need for updating of, the operation value of the parameter in response to the monitoring function.
Abstract:
A memory system architecture/interconnect topology includes a configurable width buffered memory module having a configurable width buffer device with at least one bypass circuit. A buffer device, such as a configurable width buffer device, is positioned between or with at least one integrated circuit memory device positioned on a substrate surface of a memory module, such as a DIMM. The configurable width buffer device is coupled to at least one memory device (by way of an internal channel), entry pin and exit pin on the memory module. The configurable width buffer device includes a multiplexer/demultiplexer circuit coupled to the entry pin and the internal channel for accessing the memory device. A bypass circuit is coupled to the entry pin and the exit pin in order to allow information to be transferred through the memory module to another coupled memory module in the memory system by way of an external channel. In an alternate embodiment of the present invention, two bypass circuits are coupled to a pair of entry and exit pins. In an embodiment of the present invention, a memory system may include at least four interfaces, or sockets, for respective memory modules having configurable width buffer devices with bypass circuits that enable additional upgrade options while reducing memory system access delays.