Abstract:
A method for producing a plurality of semiconductor components is provided, wherein a semiconductor layer sequence having a first semiconductor layer, a second semiconductor layer and an active region is applied on a substrate. A contact structure is formed for electrically contacting the first and the second semiconductor layers. An auxiliary substrate is applied on the semiconductor layer sequence, so that the semiconductor layer sequence is arranged between the auxiliary substrate and the substrate. In a subsequent step, the substrate is removed from the semiconductor layer sequence. The semiconductor layer sequence is structured into a plurality of semiconductor bodies by forming at least one trench separating the semiconductor bodies. An anchoring layer is formed to cover the trench and vertical surfaces of the semiconductor bodies. A plurality of tethers is formed by structuring the anchoring layer in regions covering the trench. The auxiliary substrate is locally detached from the semiconductor bodies, wherein the tethers remain attached to the auxiliary substrate. At least one semiconductor body is selectively picked up by separating the tethers from the auxiliary substrate. Moreover, a semiconductor component produced by said method is provided.
Abstract:
Embodiments of the invention include a semiconductor structure including a light emitting layer sandwiched between an n-type region and a p-type region. A growth substrate is attached to the semiconductor structure. The growth substrate has at least one angled sidewall. A reflective layer is disposed on the angled sidewall. A majority of light extracted from the semiconductor structure and the growth substrate is extracted through a first surface of the growth substrate.
Abstract:
A light emitter includes a first mirror that is an epitaxially grown metal mirror, a second mirror, and an active region that is epitaxially grown such that the active region is positioned at or close to, at least, one antinode between the first mirror and the second mirror.
Abstract:
A light emitter includes a first mirror that is an epitaxially grown metal mirror, a second mirror, and an active region that is epitaxially grown such that the active region is positioned at or close to, at least, one antinode between the first mirror and the second mirror.
Abstract:
Bei einer Lumineszenzdiode (1) mit einer aktiven Zone (7), die elektromagnetische Strahlung in eine Hauptstrahlrichtung (15) emittiert, wobei der aktiven Zone (7) in der Hauptstrahlrichtung (15) eine reflexionsmindernde Schichtenfolge (16) nachgeordnet ist, enthält die reflexionsmindernde Schichtenfolge einen aus mindestens einem Schichtpaar (11, 12) gebildeten DBR-Spiegel (13), eine dem DBR-Spiegel (13) in der Hauptstrahlrichtung (15) nachfolgende Vergütungsschicht (9) und eine zwischen dem DBR-Spiegel (13) und der Vergütungsschicht (9) angeordnete Zwischenschicht (14).
Abstract:
A method according to the present invention for fabricating high light extraction photonic device comprising growing an epitaxial semiconductor structure on a substrate and depositing a first mirror layer on the epitaxial semiconductor structure such that the epitaxial semiconductor structure is sandwiched between the first mirror layer and the substrate. Flip-chip mounting the epitaxial semiconductor structure, with its first mirror and substrate on a submount such that the epitaxial semiconductor device structure is sandwiched between the submount and substrate. The substrate is then removed from the epitaxial structure by introducing an etch environment to the substrate. A second mirror layer is deposited on the epitaxial semiconductor structure such that the epitaxial semiconductor structure is sandwiched between the first and second mirror layers. A device according to the present invention comprising a resonant cavity light emitting diode (RCLED) mounted to a submount.
Abstract:
A high contrast reflective mirror (24) includes a plurality of alternating first monocrystalline layers (14) and second monocrystalline layers (16). The first monocrystalline layers are formed of an oxide material that has a cubic structure and a first index of refraction. The second monocrystalline layers are formed of a semiconductor material that has a second index of refraction. The first index of refraction and the second index of refraction differ by at least about 0.5
Abstract:
An optically-active multi-layer dielectric structure comprises an optically active zone between two mirrors forming a Fabry-Perot microcavity. The optically active zone comprises an optically active material of wavelength λ centred in a layer of high refractory index medium of optical thickness less than λ/2 surrounded by two layers of low refractory index medium each of optical thickness less than λ/4,the combined optical thickness of said three layers making up the optically active zone being less than or equal to 3λ/4. This structure behaves like a λ/2 high index cavity except that there is a maximum of the optical field in the centre of the cavity instead of the usual node. This phase-shifted structure is useful for planar light emitting devices, vertical cavity lasers, and photo-detectors.
Abstract:
An optoelectronic device, such as a VCSEL, is disclosed whose transmission does not change upon encapsulation by a material such as plastic, epoxy or other suitable encapsulant with a known index of refraction. The surface reflection of the VCSEL surface is very different depending on whether it is terminated in air or the encapsulant, with a much larger reflection in the case of air. It is known that the surface reflection can be made out of phase with the rest of the mirror, effectively increasing the transmission. The amount of the transmission increase can be adjusted by controlling the thickness of the surface layer. Once the VCSEL is encapsulated, the surface reflection is reduced, and the transmission at the facet is increased but the dephased reflection is also reduced. Depositing a surface layer whose index of refraction is similar to the encapsulant, and adjusting the surface layer thickness correctly, the overall transmission from the laser into the terminating material is unchanged, be it air or encapsulation. As a result, the laser properties such as slope efficiency and threshold current are unchanged upon encapsulation. The same procedure may be applied to devices other than VCSELs such as other types of lasers, LEDs, and resonant cavity photodetectors to achieve encapsulated optoelectronic components with controlled properties that remain unchanged upon encapsulation.
Abstract:
Resonant optical cavity light emitting devices and method of producing such devices are disclosed. The device includes a substrate, a first spacer region, a light emitting region, a second spacer region, and a reflector. The light emitting region is configured to emit a target emission deep ultraviolet wavelength, and is positioned at a separation distance from the reflector. The reflector has a metal composition comprising elemental aluminum. Using a three-dimensional electromagnetic spatial and temporal simulator, it is determined if an emission output at an exit plane relative to the substrate meets a predetermined criterion. The light emitting region is placed at a final separation distance from the reflector, where the final separation distance results in the predetermined criterion being met.